• Title/Summary/Keyword: Aleksandrov problem

Search Result 4, Processing Time 0.018 seconds

THE ALEKSANDROV PROBLEM AND THE MAZUR-ULAM THEOREM ON LINEAR n-NORMED SPACES

  • Yumei, Ma
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1631-1637
    • /
    • 2013
  • This paper generalizes the Aleksandrov problem and Mazur Ulam theorem to the case of $n$-normed spaces. For real $n$-normed spaces X and Y, we will prove that $f$ is an affine isometry when the mapping satisfies the weaker assumptions that preserves unit distance, $n$-colinear and 2-colinear on same-order.

DISTANCE-PRESERVING MAPPINGS ON RESTRICTED DOMAINS

  • Jung, Soon-Mo;Lee, Ki-Suk
    • The Pure and Applied Mathematics
    • /
    • v.10 no.3
    • /
    • pp.193-198
    • /
    • 2003
  • Let X and Y be n-dimensional Euclidean spaces with $n\;{\geq}\;3$. In this paper, we generalize a classical theorem of Bookman and Quarles by proving that if a mapping, from a half space of X into Y, preserves a distance $\rho$, then the restriction of f to a subset of the half space is an isometry.

  • PDF

ON DISTANCE-PRESERVING MAPPINGS

  • Jung, Soon-Mo;M.Rassias, Themistocles
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.667-680
    • /
    • 2004
  • We generalize a theorem of W. Benz by proving the following result: Let $H_{\theta}$ be a half space of a real Hilbert space with dimension $\geq$ 3 and let Y be a real normed space which is strictly convex. If a distance $\rho$ > 0 is contractive and another distance N$\rho$ (N $\geq$ 2) is extensive by a mapping f : $H_{\theta}$ \longrightarrow Y, then the restriction f│$_{\theta}$ $H_{+}$$\rho$/2// is an isometry, where $H_{\theta}$$\rho$/2/ is also a half space which is a proper subset of $H_{\theta}$. Applying the above result, we also generalize a classical theorem of Beckman and Quarles.