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ON DISTANCE-PRESERVING MAPPINGS

SooN-Mo JUuNG* AND THEMISTOCLES M. RASSIAS

ABSTRACT. We generalize a theorem of W. Benz by proving the
following result: Let Hyg be a half space of a real Hilbert space with
dimension > 3 and let Y be a real normed space which is strictly
convex. If a distance p > 0 is contractive and another distance Np
(N > 2) is extensive by a mapping f : Hs — Y, then the restriction
flHe,,,, is an isometry, where Hp. /2 is also a half space which is a
proper subset of Hy. Applying the above result, we also generalize
a classical theorem of Beckman and Quarles.

1. Introduction

Let X and Y be normed spaces. A mapping f: X — Y is called an
isometry (or a congruence) if f satisfies

1 (@) = fFWll = llz —yll

for all z,y € X. A distance p > 0 is said to be contractive (or non-
expanding) by f : X — Y if ||z—y| = p always implies || f(z)—f(y)| < p.
Similarly, a distance p is said to be extensive (or non-shrinking) by f if
the inequality || f(z)— f(y)|| > pis true for all z,y € X with ||z ~y| = p.
We say that p is conservative (or preserved) by f if p is contractive and
extensive by f simultaneously.

If f is an isometry, then every distance p > 0 is conservative by f,
and conversely. At this point, we can raise a question:

Is a mapping that preserves certain distances an isometry?

In 1970, A. D. Aleksandrov [1] had raised a question whether a map-
ping f : X — X preserving a distance p > 0 is an isometry, which is now
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known to us as the Aleksandrov problem. Without loss of generality, we
may assume p = 1 when X is a normed space (see [15]).

Indeed, earlier than Aleksandrov, F. S. Beckman and D. A. Quarles
[2] solved the Aleksandrov problem for finite-dimensional real Euclidean
spaces X = E™

If a mapping f : E™ — E™ (2 < n < 00) preserves distance
1, then f is a linear isometry up to translation.

For n = 1, they suggested the mapping f : E! — E! defined by

z+1 for integral z,

@ ={

T otherwise

as an example for a non-isometric mapping that preserves distance 1.
For X = E*, Beckman and Quarles also presented an example for a
unit distance preserving mapping that is not an isometry (cf. [12]).

We may find a number of papers on a variety of subjects in the
Aleksandrov problem (see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20} and also the references cited therein).

In 1985, W. Benz (3] introduced a sufficient condition under which a
mapping, with a contractive distance and an extensive one, is an isom-

etry (cf. [5]):

Let X andY be real normed spaces such that dim X > 2 and
Y is strictly convex. Suppose f: X — Y is a mapping and
N > 2 is a fized integer. If a distance p > 0 is contractive
and Np is extensive by f, then f is a linear isometry up to
translation. -

In this paper, we prove a theorem which generalizes a theorem of W.
Benz (see [3]); more precisely, let Hy be a half space of a real Hilbert
space X with dimension larger than 2 and let Y be a real normed space
which is strictly convex. If a distance p > 0 is contractive and another
distance Np, N > 2, is extensive by a mapping f : Hy — Y, then the
restriction f|m, +o/2 18 an isometry, where Hy, /2 is a half space and also
a proper subset of Hy.

Moreover, applying this result, we generalize a classical theorem of
Beckman and Quarles by proving that if a mapping, from a half space
of X into Y, preserves a distance p, then the restriction of f to a subset
of the half space is an isometry.
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2. On a theorem of Benz

Let X be a real Hilbert space with dim X > 3 for which there exists
a unit vector w € X and a subspace X; of X with X = X; ® Sp(w) and
X, L Sp(w), where Sp(w) denotes the subspace spanned by w. We now
define half spaces,

Hy={z+w:z€ Xs; A >0}

for a fixed real number 8. Assume that Y is a real normed space which
is strictly convex.

Throughout this section, let a real number p > 0 and an integer
N > 2 be fixed. Furthermore, assume that a mapping f : Hy —» Y
satisfies both the following properties:

(P1) p is contractive by f;
(P2) Np is extensive by f.

Following the steps presented in the paper [3], we prove in the fol-
lowing two lemmas that if a mapping f : Hy — Y satisfies both (P1)
and (P2), then f preserves the distances p and 2p.

LEMMA 1. For all x,y € Hy, ||x — y|| = p implies ||f(z) — f(y)|| = p.

Proof. Assume that z and y of Hp satisfy [z —y|| = pand z—y € Hy,
where we set Hy = {z + Mw : z € X;; A > 0}. Define p, =y +n(z—y)
forn=0,1,...,N. Then, p, € Hy, “pN _y“ = Np and Hpn _pn—IH =p
forn=1,...,N. Using (P1) and (P2), we have

N
Np < [If(pn) = F@)Il < D N1f(n) — F(pr-1)]| < Np.
n=1

Hence, we conclude that ||f(z) — £(u)]| = [l/(p2) = f(po)| = p.
Ifz—y & Hothen y—2x € Hy. In this case, we define p, = z+n(y—z)
and we get the same result by following a similar process as before. [

LEMMA 2. Forallz,y € Hy, ||z —y| = 2p implies || f(z) — f(y)|| = 2p.

Proof. Assume that x and y in Hy satisfy ||z—y|| = 2p and z—y € H,
where we may refer to the proof of Lemma 1 for the definition of Hy.
Let us define

pn=y+ (n/2)(z —y)
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forn=0,1,...,N. Then, p, € Hy, |lpn —y| = Np and ||pp, — pn-1|| = p
forn=1,...,N. Now, we make use of (P1) and (P2) to get

N
Np < [1£(on) = FWI <D I1f(pn) — F(pr-1)ll < Np,
n=1

N
(1) 1) = @I =D 1f(Pn) = fFPa-1)l-
n=1 '

If we assume || f(p2) — f(po)ll < |f(p2) — F(p)ll + 1f(p1) — F(po)l|, then
it should be N > 3 in view of (1) and further

N
1F (o) = SO < DI @) = f@a-1)l| + 1 (p2) = £ (o)

n=3

N
< 3l (pn) — FPr-1)ll,

n=1

which is contrary to (1). Therefore, we conclude by Lemma 1 that

I (@)= f @Il = 1F (p2) = F (o)l = I (p2) = f () +[1.f (1) = f (RO)| = 2.

For the case of z—y ¢ Hy, we define p, = z+(n/2)(y—z) and follow
the same process as before to prove our assertion. t

Because of the strict convexity of Y, the following lemma is obvious
(or see [3]). Hence, we omit the proof.

LEMMA 3. For alla,b,c € Y and for any a > 0, ||[b—al|| = a = ||c—1]|
and ||c — a|| = 2« imply ¢ = 2b — a.

We use the mathematical induction to prove the following lemma
which turns out to be essential for treating the cases when x and y have
the same X -components.

From now on, we denote by z, ys and z; the X;-component of z, y
and z, respectively, if there is no specification.

LEMMA 4. For any givenn € N, let x = 2, + Aw and y = ys; + pw be
any points of Hg with x, = y, and A\, pu > 0+(27242734... 42~ (n+1)),
Then, ||z —y|| = 27"p implies ||f(x) — f(y)|| =27"p.

Proof. Assume that £ = z; + Aw and y = ys + pw are points of
Hy such that zs = ys, A\, pp > 0+ p/4 and ||z — y|| = |A — p] = p/2.
Choose a z = zs + (A + p)w/2 € Hy with |z — 2| = ||y — 2| = p.
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Furthermore, select ' and y’ on the rays zZ and zy, respectively, such
that ||z’ — || = ||y’ — z|| = 2p. Then, ||z’ —¢/|| = p.
If we set ' =z, + Nw and ¢/ =y} + p/w, then

N =X+ A—p)/2>0+p/4+(—p/2)/2=10
and
W=p+p—N/2>0+p/4+(-p/2)/2=09.

So, we know that both z’ and ' are in Hjy.
According to Lemmas 1 and 2, we have

(=) = F() = IF () = f) = £ (=) = @ = o,

I1f£(=") = f@)I = 11£&) = F W) = p,

(") = fFI = 1F ") = (@)l = 2.
In view of Lemma 3, f(z) is a midpoint of f(z') and f(z), and likewise for
f(y). Hence, the triangles f(z)f(2)f(y) and f(z')f(2)f(y’) are similar
and we conclude that || f(z) — f(y)|| = p/2.

Now, we assume that our assertion is true for some n € N and suppose
that £ = 2,4+ Aw and y = y, +pw satisfy z5 = ys, \, pu > 0+(2724+273+
o422 p and ||z — y|| = 2=tV p, Choose a z = 25 + (A + p)w/2
with ||z — z|| = |ly — z|| = p. Moreover, select 2’ and v’ on the rays
zZ and 7y respectively such that ||z’ — 2| = ||y — z|| = 2p. Then,
|lz' — ¥'|| = 27"p. Similarly as in the first part, we know that both the
2’ and 3y’ lie in Hy.

By Lemmas 1 and 2, we get

(@) = F = F () — fF@ = »,
If (") = f@I = IlF ) = FW)ll = p,
(") = fFI = £ ") — f(2)l = 2.
By Lemma 3, f(x) is a midpoint of f(z’) and f(z), and likewise for f(y).
Furthermore, we know that 2’ = z, + Nw and 3 = y, + p'w satisfy
L=yl Ny >0+ (2724278 4. 4274 5 and ||2' — /|| = 2.
By the assumption of the induction, we see that [|f(z') — f(¥)] = 27"p.

Since the triangles f(z)f(z)f(y) and f(z')f(2)f(y') are similar, we
may conclude that ||f(z) — f(y)|| = 2=+, O

In the following lemma, we prove that if  and y are separated from
each other by a specific distance, then some equidistant points on the
line through z and y are mapped by f onto some equidistant points of
the line through f(z) and f(y).
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LEMMA 5. (a) If z and y are any points of Hg with ||z —y| = p, then
flz+m(y—zx)) = f(z) +m(f(y) — f(z)) holds for all m € NU{0} with
z+m(y —z) € Hy.

(b) For any n € N, let x,y be points of Hy, ;s with x5 = ys and
|z -yl =2""p. Ifx+m(y —z) € Hyy ) for m €N, then f(z+m(y —
z)) = f(z) + m(f(y) — f(z)).

Proof. (a) Assume that z,y € Hp satisfy ||z — y|| = p. We use
induction to show that f(z + m(y — z)) = f(z) + m(f(y) — f(x)) holds
for all m € NU {0} with 2 + m(y — z) € Hp. There is nothing to
prove for m = 0 or 1. We now assume that our assertion is true for
m=0,1,...,k, where k > 1 is some integer. Put p; = z + i(y — z) for
1 € N and let pxy1 € Hy. Then, we get

lpx — m-1ll=p= ||Pk+1 — px|| and lPk+1 — pr—1ll = 2p.

According to Lemmas 1 and 2, we have

| f(pe)—F (Pr-1)I| = p = ||f (Pr41)— F(r)|l and || f (Pr+1)—F(Pr-1) || = 2p-

Hence, it follows from Lemma 3 that

frs1) = 2f(px) — fpr-1) = f(2) + (K + D)(f(y) — f(2)),

as we desired.

(b) Let z = 25+ w and y = ys+pw be any points of Hy, ,/5. Assume
that =5 = ys and ||z — y|| = 27"p for some n € N.

We also use induction to prove our assertion. There is nothing to
prove for m = 1. We assume that our assertion holds for m =1,...,k,
where k > 1 is some integer.

Set p; = z +i(y — ) for i € N and let pry1 € Hgyp/2- Then, we have

Pk — Pro1ll = 27" = l|ph+1 — pill and [lpes1 — pe-1]l = 27" .

Since the Xs-component of p; is equal to zs and p; € Hygy,/p for i =
1,...,k+ 1, we can make use of Lemma 4 to show

I1f(®r) = fox-0ll = 27" = | (Pr+1) — F (o),
£ (Dr41) — F@r—1)l| = 27" Vp.
Hence, it follows from Lemma 3 that
fore1) = 2f(or) — f(pe-1) = f(z) + (B + 1)(f(v) — f(=)),
which completes the proof of (b). O

LEMMA 6. Let n be a fixed positive integer. If x,y € Hy satisfy
|z — yll = np, then ||f(z) — f(W)|| = np.
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Proof. Assume that z and y are points of Hg and are separated from
each other by a distance np. Choose a point z on the segment between
z and y such that x = y + n(z — y). Then, we have ||z — y|| = p. From
Lemma 5 (a), it follows that f(z) = f(y) + n(f(z) — f(y)). Hence, by
Lemma 1, we get

I1f (@) = fWl = nllf(z) = FWI = np,

which completes our proof. O

Using Lemmas 4, 5 and 6, we can prove the following lemma which
is indispensable for the proof of Theorem 9 below.

LEMMA 7. Let x = x5 + Aw and y = ys + pw be any points of Hy.
Assume that m,n € N are given.

(@) If 2, # o and |z — |l = np/m, then | f(z) - FW)| = np/m.
(b) If x,y € Hyypj2, Ts = ¥s, and if ||z — y|| = 27"mp, then | f(z) —

fWll =2""mp.

Proof. (a) Assume that = and y are points of Hy with ||z —y|| = np/m
which are represented by x = x5 + Aw and y = ys + pw, where s # ys,
A > p > 0, and where m > 2 and n are positive integers.

Set z = z; + pw and examine whether there exists a z, € X which
is a solution of the following parametric equations

2 — xHZ = |lzs — 5138\‘2 + (1 — >‘)2 = k2p?,
Iz = yll* = [lzs — ys])? = k’p?,
lz = ylI? = llzs — ysll* + (1 — A)? = (np/m)?,

where k is a parameter whose value is integral. It follows from these
equations that

25 — zsll = /K207 — (1 — A)?,
(2) ”Zs - ys“ = kpa
|lzs — ysll = \/(np/m)2 — (k- )‘)2'

The sphere in X; of radius \/k2p%2 — (u — A)? and with center at z
is expressed by the first equation of (2). Let us use the notation S; for
this sphere. The second one of (2) is an equation for the sphere Sy in
X, of radius kp and with center at y,. If k is so large that the inequality

kp < V/E2p% — (= A2 + /(np/m)? — (u — A)?
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holds, then S; NSy # 0. Hence, we can select a zs from S3 N Sy, i.e., the
parametric equations (2) are solvable in z;. With such a z;, z = 2z, + pw
is separated from x resp. from y by a same distance kp.

Choose z',y € Hy on the ray zT resp. %y such that ||z’ — z|| =
|y — z|| = kmp. We then have ||z’ — 3/|| = np. By Lemma 6, we get

1f (@) = F(2)I = 1 F(y) — F(2)l = kp,

£ (=) = £ = lF() = f(2)]] = kmp,

(") = @) = np.
Furthermore, by a slight modification of Lemma 5 (@), we conclude that
f(z) lies on the segment between f(z) and f(z') and also that f(y) lies
on the segment between f(z) and f(y).

Hence, the triangles f(z)f(2)f(y) and f(z')f(2)f(y’) are similar.
Therefore, we obtain || f(z) — f(y)|| = np/m.

(b) Assume that = x; + Aw and y = ys + pw are points of Hy, /9
with z; = ys and ||z —y|| = 27"mp. Choose a z on the segment between
z and y with ||z—y|| = 27"p. Then, by Lemma 4, || f(z) — f(y)|| = 27"p.
Further, in view of Lemma 5 (b), we get

f@) = fly+m(z—y)) = fy) + m(f(2) — f(¥)),
i.e.,
1 (x) = FW)ll = m |1 f(z) — fW)I = 27"mp,
which completes the proof. (I
LEMMA 8. Assume that a and 3 are real numbers with 23 > a > 0.

Then, for all 7,y € Hy with ||z —y|| = a, there exists a z € Hy satisfying
|z — z|| = 8 = ||z — yl|. In particular, if xs # ys, then zs & {xs,ys}-

Proof. Assume that x = z; + Aw and y = ys + pw are points of Hy
with ||z — y|| = a, where A\, u > 6. It is to find a z = 2, + dw € Hp which
is a solution of the following equations:

2 = al|? = ||z — 2s]* + (6 — N)? = 5%,
(3) Iz~ yll* = llzs — wsll® + (6 — p)? = 5%,
Iz~ ylI? = llzs — ysl* + (A — p)® = &%
Put 6 = (A + u)/2 (> 6). It then follows from (3) that
ll2s — sl = B% — (1 — A)?/4,
llzs — ysll® = B% — (1 — A)?/4,
llzs — ysll® = o — (u— ).
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Since dim X; > 2 and since
llzs — x5l + ll2s — ysll = 2|2 — =5l
=V(28)" = (u =)
> /a2 — (u— N)?
= [|zs — ysl|

(where ||zs — ys|| > 0 for z5 # ys, and hence z5 # x5 and z5 # ys), there
exists at least one 25 € X, which is a solution of the above equations.
With such a zs, z = zs + (A + p)w/2 € Hy satisfies our requirement.
Hence, the proof is complete. 0

So far, we have proved all preliminary lemmas to the main theorem of
this section. In the following theorem, we generalize a theorem of Benz:

THEOREM 9. Let a real number p > 0 and an integer N > 2 be
given. If p is contractive and Np is extensive by a mapping f : Hg — Y,
then flm,,,, is an isometry. In particular, it holds that

(@) — fWIl = llz -yl
for any points ¢ and y of Hyp with x5 # ys.

Proof. Assume that z,y € Hy,,/p are distinct. For those z and y,

choose the sequences, (k;), (m;) and (n;), of non-negative integers with
the following properties:
(K) 27"kip < ||z — y|| < 27™(k; + 1)p for all sufficiently large integers
5
(M) 27 (m; —1)p < ||z —y| < 27™m;p for all sufficiently large integers
4
(N) (n;) increases strictly to infinity.

Since Hg,,/2 is open, we can select a z; on the segment Ty and a
w; € Hg+p/2 such that

o = 2ll = 27" kip and 1z = i)l = lws =yl = 27"

for any sufficiently large i. It then follows from Lemma 7 (a) and (b)
that

1f (@) = f(zi)l = 27™kip and || f (z:) — f(wi)ll = ||f (wi) = FW)l = 27™p
for any sufficiently large integer i. Thus, it follows from (K) that
(=) = FWI < 1F(=) = flz)ll + 1f () — Flwa)ll + || £ (wi) — F (@)l
< Jlz —yll +27"p
for any sufficiently large integer ¢, i.e., we get || f(z) — f(W)|l < |z — vl
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On the other hand, since Hy, /5 is open, we can choose a v; € Hy. /o
such that
|z —vil| =27™m;p and ||y — vil| = 27™p

for all sufficiently large integers i. From Lemma 7 (a) and (b) we get

1£(2) ~ F()]l = 2 ™mqp and [1£(y) ~ f(wr)]| = 27p.
Hence, it follows from (M) that

If () = Fll = (=) = f)ll = 1 f () = fw)ll = llz —yll —27™p

for all sufficiently large integers i, i.e., we get || f(z) — fF(¥)|| = |z - vl
which completes the proof of the first part.

For the second part of this theorem, let z,y € Hy satisfy x5 # ys and
r1p < ||z — y|| < rop, where 71,72 > 0 are given rational numbers. We
prove that r1p < || f(z) — f(v)|| < rep: According to Lemma 8, there
exists a z € Hy with ||z — z|| = rep/2 = ||z — 9|, Ts # 25 and ys # 2.
Due to Lemma 7 (a), we get

1£(z) = F@)Il = rap/2 = [1f(2) = FW)II-

Hence,

1f(2) = F)l < 1F (@) = F @I + 1 (2) = F@) = r2p.

On the other hand, assume that there existed z,y € Hy with =5 # ys,
r1ip < |lz —yl| <rep and || f(z) — f(y)|| < r1p. Then,

(4) r2p — | =yl < r2p —r1p <120 — || f(2) — fF(W)I|-

Define z = z+ A(y —x) for the case y—x € Ho with A = rop [z —y[ "1 >
1. (Otherwise, i.., if y — z & Hy, we replace the definition of z by
¥+ A(z — y) and repeat the following process similarly.) It then follows
that x5 # 25, ys # 25 and ||z — z|| = rap. Furthermore, (4) implies
that ||z —yll = (A= 1)|lz — yl| < (r2 —r1)p. Due to Lemma 7 (a), we
have ||f(2) — f(z)|| = r2p and by considering the argument in the last
paragraph, we see that || f(z) — f(y)|| < (ro — r1)p. Subsequently, we
have

rop = (£ (2) = f(@)| < £ (=) = fFWI + (1 £ () — fF@)l
< (rz—r1)p+r1p =r2p,
which is a contradiction. Therefore, it should be r1p < || f(z) — f(y)|| <

2p0.
Since the set of all rational numbers is dense in R, we conclude that
the second assertion is true. O
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3. On a theorem of Beckman and Quarles

Throughout this section, let X and Y denote n-dimensional Euclidean
spaces, where n > 3 is a fixed integer, for which there exists a unit vector
w € X and a subspace X of X such that X = X; @ Sp(w) and X is
orthogonal to Sp(w), where Sp(w) is the subspace of X which is spanned
by w.

Let us define

ro=0,r=0+4+p ro=0+p+p1, 13=0+1+1/n)p+ p1,

where 6 is a real number, p is a positive real number and
p1=+2(n+1)/np.
Using these ri’s we define
Er={r+ w:z€ Xs; \>rp}

for k=0,1,2,3. We remark that E5 C E> C E; C Ey C X.

Let E be a subset of an n-dimensional Euclidean space X. Following
W. Benz, we will call a set of n distinct points of E a (-set in E if the
points are pairwise of distance G > 0. If there are two distinct points of
X, which have distance « from each point of a 8-set P in E, the two
points will be called the a-associated points of P.

For the proofs of the following two lemmas, we may refer the reader
to 2) and 3) in section 2 of [4].

LEMMA 10. Assume that « and 8 are positive real numbers with
(e, B) :=4a? — 26%(1 = 1/n) > 0

and that P is a 3-set in E. The a-associated points of P are uniquely
determined and the distance between them is \/7v(a, ().

LEMMA 11. Assume that o and (3 are positive real numbers with
v(a,8) > 0. If x and y are points of X (or of V) with ||z — y| =
(o, B), then there exists a 3-set P in X (or in Y) such that x and y
are the a-associated points of P.

LEMMA 12. If a mapping f : Ey — Y preserves the distance p, then
the distance p1 = \/v(p, p) is preserved by f|E;.

Proof. Assume that = and y are points of E; satisfying ||z — y|| = p1.
According to Lemma 11 and the definition of Ej, there exists a p-set
P in Ej such that = and y are the p-associated points of P. Since f
preserves p, P’ = f(P) is also a p-set in Y.
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Due to Lemma 10, there are exactly two distinct p-associated points

z' and ¥’ of P’ and they satisfy ||z’ — v'|| = v/v(p, p) = p1. Since there
exist only two p-associated points of P’, we have {f(z), f(y)} C {«’,¢'},
ie., [|f(z) - f()|| =0or p1.

Assume that f(z) = f(y). Choose a z € Ep with ||z — z|| = p1 and
ly — z|| = p. In view of Lemma 11, there exists a p-set Q in Ey such
that  and z are the p-associated points of ) (Because z € E; and
lz — q|| = p for each ¢ € Q, Q is a subset of Ep). Similarly, Q' = f(Q)
isa psetinY.

Due to Lemma, 10, there exist exactly two distinct p-associated points
z and 2" of Q' which satisfy ||z — 2| = /v(p,p) = p1- Hence,
{f(@), ()} € (2", 2"}, e, | (@)= F( = O 0x pr, ey | F () —F(2)] =
0 or p; because we assumed f(z) = f(y).

On the other hand, we get p = |ly — 2| = ||f(y) — F(2)|| = 0 or p1,
which is a contradiction. Altogether, we conclude that ||f(z) — f(y)|| =
Pt g

LEMMA 13. If a mapping f : Ey — Y preserves the distance p, then
the distance pa = \/v(p1,,m) = (n + 1)(2p/n) is preserved by f|g,.

Proof. Assume that z and y are points of E; with ||z — y|| = p2.
According to Lemma 11, there exists a p;-set P in E; such that 2 and
y are the p;-associated points of P (see also the definition of E}). Since
f|E, preserves p; (see Lemma 12), P’ = f(P) is also a p;-set in Y.

By Lemma 10, there exist only two distinct pj-associated points z’
and y' of P’ whose distance is ||z’ —1'|| = p2. Thus, we get {f(z), f(y)} C
{z',y'}, ie., [ f(z) — F()ll = 0 or py.

Assume f(z) = f(y). Choose a z € E; with ||z — 2| = p2 and
ly — z|| = p1 (Because of y € E; and ||y — z|| = p1, we conclude that
z € F1). In view of Lemma 11, there exists a p;-set @ in Ej such that z
and z are the pj-associated points of Q (Because x € Ez and ||z—¢q|| = ;1
for all ¢ € Q, Q is a subset of Eq). Hence, Q' = f(Q) is a p1-set in Y
(see Lemma 12).

By Lemma, 10, there exist exactly two distinct p;-associated points z”
and 2” of @ and ||z” — 2”|| = pa. Therefore, we have || f(z) — f(2)|| =0
or po, i.e., || f(y) — f(2)]| = 0 or p2 because we assumed f(z) = f(y).

Since y, z € E1, by Lemma 12, we get p1 = |ly—z|| = || f(¥)—f(2)|| =0
or ps, a contradiction. Altogether, we conclude that ||f(z) — f(v)]| =
p2. (|

LEMMA 14. If a mapping f : Ey — Y preserves the distance p, then
the distance p3 = v/v(p, p1) = 2p/n is contractive by f|g,.
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Proof. Assume that z and y are points of Ey with ||z — y|| = ps.
By Lemma 11, there exists a p;-set P in E; such that x and y are the
p-associated points of P (z € Ey and ||z — p|| = p for all p € P. Hence,
P is a subset of E1). By Lemma 12, P’ = f(P) is also a p;-set in Y.

According to Lemma 10, there exist only two distinct p-associated
points ' and y' of P’ with ||z’ — ¢/|| = p3. Hence, it follows that
Ilf (@) — f(»)ll =0 or p3. Consequently, we have || f(z)— f(y)|| < p3. O

We are now ready to generalize a classical theorem of Beckman and
Quarles by proving that if a mapping, from a half space Fy of X into
Y, preserves a distance p, then the restriction of f to a half space F3 is
an isometry.

THEOREM 15. If a mapping f : Eg — Y preserves the distance p,
then the restriction f|g, is an isometry. In particular, if any z,y of E

satisfy x5 # ys, where s and ys are the X;-components of x and y, then
it holds that | f(z) — f(y)ll = ll= — yl|.

Proof. According to Lemmas 13 and 14, the distance 2p/n is con-
tractive and the distance (n+1)(2p/n) is extensive (preserved) by f|g,.
Hence, by Theorem 9, the restriction f|g, is an isometry.

In view of the second part of Theorem 9, the second part of this
theorem is obviously true. 0
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