DOI QR코드

DOI QR Code

MAPPINGS OF CONSERVATIVE DISTANCES

  • Jung, Soon-Mo (Mathematics Section, College Of Science And Technology, Hong-Ik University)
  • Published : 2003.02.01

Abstract

In this paper, we will deal with the Aleksandrov-Rassias problem. More precisely, we prove some theorems concerning the mappings preserving one or two distances.

Keywords

References

  1. Soviet Math. Dokl. v.11 Mapping of families of sets A. D. Aleksandrov
  2. Proc. Amer. Math. Soc. v.4 On isometries of Euclidean spaces F. S. Beckman;D. A. Quarles https://doi.org/10.1090/S0002-9939-1953-0058193-5
  3. Aequationes Math. v.29 Isometrien in normierten Rauman W. Benz https://doi.org/10.1007/BF02189828
  4. Elem. Math. v.42 Elementary proof of the theorem of Beckman and Quarles W. Benz
  5. Aequationes Math. v.34 A contribution to a theorem of Ulam and Mazur W. Benz;H. Berens https://doi.org/10.1007/BF01840123
  6. Math. Mag. v.46 Characterizing motions by unit distance invariance R. L. Bishop https://doi.org/10.2307/2687969
  7. Facta Univ. Ser. Math. Inform. v.7 On some properties of isometric mappings K. Ciesielski;Th. M. Rassias
  8. Math. Mag. v.49 Functions that preserve unit distance D. Greenwell;P. D. Johnson https://doi.org/10.2307/2689433
  9. Candidate's Dissertation On mappings that preserve a family of sets in Hilbert and hyperbolic spaces A. Guc
  10. Soviet Math. Dokl. v.17 On a characteristic property of isometric mappings A. V. Kuz'minyh
  11. Proc. Amer. Math. Soc. v.116 On the Aleksandrov problem of conservative distances B. Mielnik;Th. M. Rassias https://doi.org/10.1090/S0002-9939-1992-1101989-3
  12. Amer. Math. Monthly v.90 Is a distance one preserving mapping between metric spaces always on isometry? Th. M. Rassias https://doi.org/10.2307/2975550
  13. Facta Univ. Ser. Math. Inform. v.2 Some remarks on isometric mappings Th. M. Rassias
  14. Indian J. Math. v.32 Mappings that preserve unit distance Th. M. Rassias
  15. Recent Progress in Inequalities Properties of isometries and approximate isometries Th. M. Rassias;G. V. Milovanovic(Edited)
  16. J. Math. Anal. Appl. v.235 Properties of isometric mappings Th. M. Rassias https://doi.org/10.1006/jmaa.1999.6363
  17. J. Natur. Geom. v.3 Properties of isometries Th. M. Rassias;C. S. Sharma
  18. Proc. Amer. Math. Soc. v.118 On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings Th. M. Rassias;P. Semrl https://doi.org/10.1090/S0002-9939-1993-1111437-6
  19. Nonlinear Funct. Anal. Appl. v.5 On Mazur-Ulam theorem and mappings which preserve distances Th. M. Rassias;S. Xiang
  20. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. v.11 On mappings with conservative distances and the Mazur-Ulam theorem Th. M. Rassias;S. Xiang
  21. Aequationes Math. v.19 Eine Erganzung zum Satz von Beckman and Quarles E. M. Schroder https://doi.org/10.1007/BF02189849
  22. J. Math. Anal. Appl. v.254 Mappings of conservative distances and the Mazur-Ulam theorem C. G. Townsend https://doi.org/10.1006/jmaa.2000.7276
  23. J. Math. Anal. Appl. v.254 Mappings of conservative distances and the Mazur-Ulam theorem S. Xiang https://doi.org/10.1006/jmaa.2000.7276