• Title/Summary/Keyword: Alamouti coding

Search Result 21, Processing Time 0.023 seconds

A Cooperative Transmission Scheme Based on Alamouti Coding for Cognitive Radio Networks Over Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 안치 무선 통신을 위한 Alamouti 코딩 기반 협력 전송 기법)

  • Kang, Seung-Goo;Kim, Jun-Hwan;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.403-411
    • /
    • 2011
  • This paper addresses a cooperative transmission scheme based on Alamouti coding for cognitive radio networks over frequency selective fading channels. In the proposed scheme, the Alamouti coded form at the destination node is constructed through a simple combination of symbols at the source node, instead of the time-reversal operation and the conjugate operation at the relay nodes used in the conventional scheme. Numerical results show that the proposed scheme achieves a higher order cooperative diversity than that of the conventional scheme.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

Noncoherent Detection of Orthogonal Modulation Combined with Alamouti Space-Time Coding

  • Simon, Marvin K.;Wang, Ji-Bing
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.124-134
    • /
    • 2003
  • In this paper, we investigate the error probability performance of noncoherently detected orthogonal modulation combined with Alamouti space-time block coding. We find that there are two types of pair-wise error probabilities that characterize the performance. We employ methods that allow a direct evaluation of exact, closed-form expressions for these error probabilities. Theoretical as well as numerical results show that noncoherent orthogonal modulation combined with space-time block coding (STBC) achieves full spatial diversity. We derive an expression for approximate average bit error probability for-ary orthogonal signaling that allows one to show the tradeoff between increased rate and performance degradation.

Improving BER Performance of IEEE 802.15.4 with Alamouti Scheme in MIMO System (MIMO 시스템에서 ALAMOUTI 기법과 IEEE 802.15.4의 BER 성능 개선)

  • Halim, Eddy Hartono;Shin, Soo-Yong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes a technique for applying space-time block coding (STBC) - Alamouti scheme on Multiple Inputs Multiple Output (MIMO) system based on IEEE 802.15.4 standard. It is applied to IEEE 802.15.4 standard in $2{\times}1$ MISO and $2{\times}2$ MIMO systems. Simulation is performed using Matlab and the results are compared with conventional IEEE 802.15.4 approaches, Single Input Single Output (SISO) system and switching diversity $1{\times}2$ Single Input Multiple Output (SIMO) system. The simulations show that applied Alamouti scheme gave better Bit Error Rate (BER) performance compared to combined IEEE 802.15.4 with switching diversity and SISO system.

Closed-form BER expressions for performance of Alamouti STC (Alamouti 공간시간부호의 성능분석을 위한 closed-form BER 표현)

  • Kong Hyung-Yun;Khuong Ho Van
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.673-678
    • /
    • 2005
  • Alamouti STC (Space-Time Code) is a part of the UMTS-WCDMA standard. However, up to the best of our knowledge no closed-form BER formula for this famous code exists. Evaluating its performance through simulations is time-consuming and therefore, there should be analytical BER graphs to serve as a reference which are derived in this paper for coherently BPSK-modulated data.

Distributed Alamouti Space Time Block Coding Based On Cooperative Relay System (협동 중계 시스템을 이용한 분산 Alamouti 시공간 블록 부호)

  • Song, Wei;Cho, Kye-Mun;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.16-23
    • /
    • 2009
  • In this paper, we propose a new distributed Alamouti space-time block coding scheme using cooperative relay system composed of one source node, three relay nodes and one destination node. The source node is assumed to be equipped with two antennas which respectively use a 2-beam array to communicate with two nodes selected from the three relay nodes. During the first time slot, the two signals which respectively were transmitted by one antenna at the source, are selected by one relay node, added, amplified, and forwarded to the destination. During the second time slot, the other two relay nodes implement the conjugate and minusconjugate operations to the two received signals, respectively, each in turn is amplified and forwarded to the destination node. This transmission scheme represents a new distributed Alamouti space-time block code that can be constructed at the relay-destination channel. Through an equivalent matrix expression of symbols, we analyze the performance of this proposed space-time block code in terms of the chernoff upper bound pairwise error probability (PEP). In addition, we evaluate the effect of the coefficient $\alpha$ ($0{\leq}{\alpha}{\leq}1$) determined by power allocation between the two antennas at the source on the received signal performance. Through computer simulation, we show that the received signals at the three relays have same variance only when the value of $\alpha$ is equal to $\frac{2}{3}$, as a consequence, a better performance is obtained at the destination. These analysis results show that the proposed scheme outperforms conventional proposed schemes in terms of diversity gain, PEP and the complexity of relay nodes.

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

MIMO ARQ Systems Using Alamouti Coding with Optimal Retransmission Order for Maritime Communications System (해상 통신을 위한 Alamouti 방식의 다중안테나 기반 최적 재전송 순서 기법)

  • Kim, Dong Ho;Li, Weiduo;Lee, Jung-Hoon;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.394-401
    • /
    • 2013
  • Recently there have been much interest in the performance improvement of maritime communication system. In the maritime communication system, the wireless channel is likely to be time-invariant and the retransmission scheme is not proper because it does not provide time diversity. For the improvement of reliability, we consider MIMO ARQ scheme using Alamouti-type signal which can provide space and time diversity. In this paper, we also propose the criterion of optimal retransmission order and provide its performance of error probability and packet throughput. The proposed MIMO ARQ scheme with optimal retransmission order has performance gain over random ordered MIMO ARQ and conventional Chase combining method. Therefore we expect that it can be adapted to the next generation maritime communication system.

Design of new space-time block codes using 3 transmit antennas (3개 송신안테나를 사용한 새로운 시공간블록부호 설계)

  • Jung Tae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.617-623
    • /
    • 2005
  • In this paper, new space-time block codes achieving full rate and full diversity for QAM and quasi-static Rayleigh fading channels when using 3 transmit antennas are proposed. These codes are constructed by serially concatenating the constellation rotating precoders with the Alamouti scheme like the conventional A-ST-CR code Computer simulations show that all of the proposed codes achieve the coding gains greater than the existing ST-CR code, in which the best has approximately 1.5dB and 3dB larger coding gains than the ST-CR code for QPSK and 16-QAM, respectively, at average SER= 10$^{-5}$.

STBC SC-FDE based on LS-Algorithm for Fixed Broadband Wireless Access System

  • Kim Han Kyong;Hwang Ho Seon;Baik Heung Ki
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.596-599
    • /
    • 2004
  • We propose an Alamouti-like scheme for combining space-time block coding with single-carrier frequency-domain equalization(SC-FDE) in fixed broadband wireless access environment. With two transmit antennas, the scheme is shown to achieve significant diversity gains at low complexity over frequency-selective fading channels

  • PDF