• Title/Summary/Keyword: Al_2\

Search Result 16,252, Processing Time 0.04 seconds

Effects of Na3PO4 Concentration on the Porosity of Plasma Electrolytic Oxidation Coatings Surface on the 6061 Al Alloy, and Subsequent-NaAlO2 Sealing (6061 알루미늄 합금의 플라즈마 전해산화 피막의 표면기공율 및 부식특성에 미치는 Na3PO4 농도 및 NaAlO2 봉공처리의 영향)

  • Song, Euiseok;Kim, Yong-Tae;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.3
    • /
    • pp.117-122
    • /
    • 2019
  • In this study, surface porosity and corrosion resistance of PEO coatings prepared on the 6061 Al alloy were investigated in terms of sodium phosphate ($Na_3PO_4$) concentrations in an alkaline solution and $NaAlO_2$ sealing. The surface morphologies of the PEO coatings clearly show that the coatings film formed in $9g\;L^{-1}$ had the lowest porosity. The $NaAlO_2$ sealing was found to remove micropores and cracks existing on the surface of PEO coatings. As a result, the $NaAlO_2$ sealing resulted in the movement of corrosion potential toward more positive value and lower corrosion current density.

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Fabrication and Physical Properties of ZrO2(m)-Al2O3ZrO2(t)-Al2O3 Structural Ceramics (ZrO2(m)-Al2O3ZrO2(t)-Al2O3 세라믹스의 제조와 물리적 특성)

  • Park, Jae-Sung;Park, Ju-Tae;Park, Jung-Rang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.140-148
    • /
    • 2010
  • The effects of the addition of either monoclinic $ZrO_2(ZrO_2(m))$ or tetragonal $ZrO_2(ZrO_2(t))$ containing 5.35[wt%] $Y_2O_3$ on the physical properties and electrical conductivity of $Al_2O_3$ were investigated. The addition of $ZrO_2$(m) and $ZrO_2$(t) increased sintered density of $Al_2O_3$. The Vickers hardness also increased as addition of $ZrO_2$(t) increased going through a maximum at 20[wt%] and the hardness of the specimens was found to be dependent on the sintered density. The addition of $ZrO_2$(t) improved the hardness of $Al_2O_3-ZrO_2$ systems and the $ZrO_2$(m) addition showed the better effect on the thermal shock property of $Al_2O_3-ZrO_2$ systems than that of the $ZrO_2$(t) addition. Above 15[wt%] addition of $ZrO_2$(t), the electrical conductivity is gradually increased with increasing applied voltage but not effects by addition of $ZrO_2$(m).

Effect of Steam and the Impregnated Metal on HFC-134a Catalytic Decomposition using Mg/𝛾-Al2O3 (Mg/𝛾-Al2O3를 이용한 HFC-134a 촉매 분해 반응에 수증기와 담지 금속이 미치는 영향)

  • Myeong-Heon Yoo;Heon-Do Jeong;;Churl-hee Cho;Dong-Woo Cho
    • Clean Technology
    • /
    • v.30 no.4
    • /
    • pp.345-356
    • /
    • 2024
  • In this study, catalytic decomposition of HFC-134, a fluorinated greenhouse gas contributing to global warming, was performed using a 𝛾-Al2O3-based catalyst with air as the oxidant and steam as the proton donor. An initial screening of the commercial 𝛾-Al2O3 showed that 𝛾-Al2O3(A) had the largest BET surface area and the highest amount of acid sites. In addition, it had the highest conversion rate at all temperatures. Although the activity of the catalyst may be slightly reduced, 5 wt% Mg/𝛾-Al2O3(A) impregnated with Mg, which is known to inhibit the deactivation of the catalyst, was prepared and the HFC-134a conversion rate was measured at different temperatures to understand the effect of Mg impregnation on the HFC-134a conversion rate. It was found that the conversion rate decreased with Mg/𝛾-Al2O3(A) compared to 𝛾-Al2O3(A). This was attributed to the decreased activity of Mg/𝛾-Al2O3 due to the decreased BET surface area and acidity. On the other hand, Mg/𝛾-Al2O3(A) showed a conversion rate close to 100% at 600 ℃, similar to that of 𝛾-Al2O3(A). After optimizing GHSV at 600 ℃, a long-term decomposition reaction of HFC-134a was carried out under GHSV = 2,000 h-1, and the amount of steam was reduced to a ratio of H/F = 2 to decompose HFC-134a with a conversion rate of 98% for 100 h. Through the catalyst analysis before and after the reaction, it was confirmed that the Mg/𝛾-Al2O3(A) catalyst could decompose HFC-134a over a long time due to the reduction of AlF3 generation by Mg impregnation and steam injection.

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

Effect of Process Parameters on Plasma Nitriding Properties of $FeAl/SiC_p$ Composites ($FeAl/SiC_p$ 복합재료의 공정변수에 따른 플라즈마 질화 특성)

  • 박지환;김수방;박윤우
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 1999
  • This study was to analyse the relationship between process parameters of the sintered composite and plasma nitriding properties with pulsed DC plasma. Fe-40at%$SiC_p$ composites of full density were fabricated by hot pressing at 1100~$1150^{\circ}C$. Sintered Fe-40at%Al and Fe-40at%$Al/SiC_p$ alloys were nitrided under pulsed DC plasma. Excellent surface hardness in the FeAl alloys could be obtained by plasma nitriding. ($H_v$ :100gf, diffusion layer : 1100~$1450kg/mm^2$, matrix : 330~$360kg/mm^2$) The wear resistance of $FeAl/SiC_p$ composites were improved about by 4~6times than FeAl and nitrided $FeAl/SiC_p$ were improved about 2 times than $FeAl/SiC_p$ matrix.

  • PDF

Mechanical Alloying Behavior and Microstructures of Extrudate in Al-Ti-(Si) Base Alloys (A1-Ti-(Si)계 합금의 기계적 합금화 및 성형체의 미세조직)

  • 최철진
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • Alloying behavior of nanocrystalline Al-Ti-(Si) composite powders via mechanical alloying (MA) has been investigated, and the effect of Si on the microstructural changes during MA was discussed. The microstructures of both MA powders and extruded compacts were examined. In Al-Ti system, the solid solutionized nanocrystalline powders could be obtained by MA. On the contrary, fine Si particles were embedded as an elemental state in the matrix of Al-Ti-Si system because of the brittleness and the negligible solid solubility of Si in Al. After hot extrusion, $Al3Ti$ phase was finely precipitated in Al-10fSTi alloy, and Si particles were dissolved to form $(Al, Si)_3Ti$ phase in Al-10%Ti-2%Si alloy.

  • PDF

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

Influence of Ca-Si Addition on Anodic Polarization Chgaraqcteristics of Al-Zn-In Anodes (海水中 Al-Zn-In 合金陽極의 分極特性에 미치는 Ca-Si 添加의 影響)

  • Seo, Chang-Je
    • Journal of Surface Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 1979
  • Many excellent Al-Zn-In anode have been developed up to the present. But for the purpose of the better performance of Al-Zn-In anodes in sea water the effect of calcium silicon addition on anodic polarization and current capacity of Al-Zn-In anodes was measured and analysed in sea water and artificial sea water. The results and conclusions obtained are summarized as follows. 1) Being compared with Al-Zn-In anodes, Al-Zn-In anodes containing 0.05% calcium silicon had superior characteristics in both anodic polarization and current capacity. 2) Corrosion patterns of the anodes containing calcium silicon were much more uniform than those of Al-Zn-In anodes. 3) In this experiment the most useful anode was Al-4% Zn-0.03% In-0.05% (Ca-Si). It had a capacity of 2.60Amp-hr of current/g and a voltage of 1.13(SCE reference) at anodic current density 1,000 4{\mu}A/cm^2$.

  • PDF

Enhanced $Al_2O_3/Ti$ Interfacial Properties Using $NbC_x-C_{1-x}/Y_2O_3$ Interlayers-(2) Determination of the Interfacial Properties ($NbC_x-C_{1-x}/Y_2O_3$ 박막코팅을 이용한 $Al_2O_3/Ti$ 계면특성향상 -(2) 계면특성평가)

  • 문철희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.921-926
    • /
    • 1997
  • Two NbCx-C1-x/Y2O3/Ti sputter-coated Al2O3 substrates (L 5.5 cm$\times$W 0.5 cm) were diffusion bonded together using hot press method at 95$0^{\circ}C$ for 3 hours under 1 MPa of applied pressure. 4 points bending tests were used to evaluate the mechanical performance of these precracked laminate beams. Two types of mechanical responses were observed: crack penetration through the interface for x=0.75, 1 and crack deflection into an interface for x=0.25, 0.5. The Al2O3/NbCx-C1-x/Y2O3/Ti system suggested here has been proves to be effective for the thermokinetical stability and tailorability of the interfaces of Al2O3/Ti composites at 95$0^{\circ}C$.

  • PDF