• Title/Summary/Keyword: AlAsSb

Search Result 126, Processing Time 0.03 seconds

Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer (AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성)

  • Lee, Eun Hye;Song, Jin Dong;Yoen, Kyu Hyoek;Bae, Min Hwan;Oh, Hyun Ji;Han, Il Ki;Choi, Won Jun;Chang, Soo Kyung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.313-320
    • /
    • 2013
  • The $AlAs_xSb_{1-x}$ step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and $Al_{0.3}Ga_{0.7}As$/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on $AlAs_xSb_{1-x}$ step-graded buffer layer was ~1.7 nm. $Al_{0.3}Ga_{0.7}As$/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the $AlAs_xSb_{1-x}$/Si substrate. Photoluminescence (PL) peak at 10 K for the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

Electrical Properties of Barium-Titanates with addition $Sb_2O_3$ ($Sb_2O_3$첨가량에 의한 Barium-Titanates의 전기적 성질)

  • Park, Chang-Yeop;Wang, Jin-Seok;Kim, Hyeon-Jae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.1
    • /
    • pp.5-14
    • /
    • 1977
  • "Electrical Properties of Barium Titanates with Addition Sb2O3." PTC BaTiO3 in low resistance at room temperature was prepatred. Al2O3, SiO2 and TiO2 were doped with a view to improving reproduction. Sb2O3 was doped as impurity in order to control of resistivity of the specimens. The relations between the amount of Sb3O3 and electrical properties wereinvestigated. Of the compositions studied, additions of 3.75mole% Al2O3, 1.25mole% SiO2, 2.25mole% TiO2 and 0.16~0.25wt% Sb2O3 to BaTiC3 was low resistivity in 14-300 ohm-cm.00 ohm-cm.

  • PDF

The recombination velocity at III-V compound heterojunctions with applications to Al/$_x$/Ga/$_1-x$/As-GaAs/$_1-y$/Sb/$_y$/ solar cells

  • 김정순
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.53-63
    • /
    • 1979
  • Interface recombination velocity in $Al_{x}$G $a_{1-x}$ As-GaAs and $Al_{0.85}$, G $a_{0.15}$ As-GaA $s_{1-y}$S $b_{y}$ heterojunction systems is studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n $Al_{x}$G $a_{1-x}$ As-GaA $s_{1-y}$S $b_{y}$-A $l_{x}$G $a_{1-x}$ As double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAs Sb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates. In the AlGaAs system, elastic lattice deformation with effective Poisson ratios .mu.$_{eff}$ (100=0.312 and .mu.$_{eff}$ (111B) =0.190 was observed. The lattice constant $a_{0}$ (A $l_{x}$G $a_{1-x}$ As)=5.6532+0.0084x.angs. was obtained at 300K which is in good Agreement with Vegard's law. In the GaAsSb system, although elastic lattice deformation was observed in (111) B-oriented crystals, misfit dislocations reduced the Poisson ratio to zero in (100)-oriented samples. When $a_{0}$ (GaSb)=6.0959 .angs. was assumed at 300K, both (100) and (111)B oriented GaAsSb layers deviated only slightly from Vegard's law. Both (100) and (111)B zero-mismatch $Al_{0.85}$ G $a_{0.15}$As-GaA $s_{1-y}$S $b_{y}$ layers were grown from melts with a weight ratio of $W_{sb}$ / $W_{Ga}$ =0.13 and a growth temperature of 840 to 820 .deg.C. The corresponding Sb compositions were y=0.015 and 0.024 on (100) and (111)B orientations, respectively. This occurs because of a fortuitous in the Sb distribution coefficient with orientation. Interface recombination velocity was estimated from the dependence of the effective minority carrier lifetime on double-heterojunction spacing, using either optical phase-shift or electroluminescence timedecay techniques. The recombination velocity at a (100) interface was reduced from (2 to 3)*10$^{4}$ for y=0 to (6 to 7)*10$^{3}$ cm/sec for lattice-matched $Al_{0.85}$G $a_{0.15}$As-GaA $s_{0.985}$S $b_{0.015}$ Although this reduction is slightly less than that expected from the exponential relationship between interface recombination velocity and lattice mismatch as found in the AlGaAs-GaAs system, solar cells constructed from such a combination of materials should have an excellent spectral response to photons with energies over the full range from 1.4 to 2.6 eV. Similar measurements on a (111) B oriented lattice-matched heterojunction produced some-what larger interface recombination velocities.ities.ities.s.

  • PDF

$In_{0.64}Al_{0.36}Sb$층의 성장온도 및 도핑에 따른 광학적 특성

  • O, Jae-Won;Kim, Hui-Yeon;Ryu, Mi-Lee;Im, Ju-Yeong;Sin, Sang-Hun;Kim, Su-Yeon;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.160-160
    • /
    • 2010
  • 테라헤르츠 소스로 저온 InGaAs를 대체하기 위해 저온에서 성장한 $In_{0.64}Al_{0.36}Sb$의 성장 온도에 따른 광학적 photoluminescence (PL)과 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. 또한 Be 도핑 농도에 따른 p형 $In_{0.64}Al_{0.36}Sb$의 PL과 TRPL 특성을 undoped $In_{0.64}Al_{0.36}Sb$와 Si-doped $In_{0.64}Al_{0.36}Sb$ 결과와 비교 분석하였다. 본 연구에 사용한 시료는 분자선 엑피탁시 (molecular beam epitaxy)법으로 GaAs 기판 위에 $In_{0.64}Al_{0.36}Sb$을 다양한 성장온도에서 ${\sim}3.7\;{\mu}m$두께 성장하였다. $In_{0.64}Al_{0.36}Sb$의 성장온도는 $400^{\circ}C$ 에서 $460^{\circ}C$까지 변화시키며 성장하였으며, Si과 Be 도핑한 $In_{0.64}Al_{0.36}Sb$ 시료는 약 $420^{\circ}C$에서 성장하였다. 모든 시료의 PL 피크는 ~1450 nm 근처에서 나타나며 단파장 영역에 shoulder 피크가 나타났다. 그러나 가장 낮은 온도 $400^{\circ}C$에서 성장한 시료는 1400 nm에서 1600 nm에 걸쳐 매우 넓은 피크가 측정되었다. PL 세기는 $450^{\circ}C$ 에서 성장한 시료가 가장 강하게 나타났으며, $435^{\circ}C$에서 성장한 시료의 PL 세기가 가장 약하게 나타났다. 방출파장에 따른 PL 소멸곡선을 측정하였으며 double exponential function을 이용하여 운반자 수명시간을 계산하였다. 운반자 수명시간은 빠른 소멸성분 $\tau_1$과 느린 소멸성분 $\tau_2$가 존재하고 빠른 성분 $\tau_1$의 PL 진폭이 약 80%로 느린 성분 $\tau_2$보다 우세하게 나타났다. 각 PL 피크에서의 운반자 수명시간 $\tau_1$은 ~1 ns로 성장온도에 따른 변화는 관찰되지 않았다. 또한 방출파장이 1400 nm에서 1480 nm까지 PL 피크 근처에서 운반자 수명시간은 거의 일정하게 나타났다. Be-doped 시료의 PL 피크는 1236 nm에서 나타나며, Si-doped 시료는 1288 nm, undoped 시료는 1430 nm에서 PL 피크가 측정되었다. PL 피크에서 PL 소멸곡선은 Be-doped 시료가 가장 빨리 감소하였으며, Si-doped 시료가 가장 길게 나타났다. 이러한 결과로부터 $In_{0.64}Al_{0.36}Sb$의 광학적 특성은 성장 온도, dopant type, 도핑 농도에 따라 변화하는 것을 확인하였다.

  • PDF

Effect of Sb and Sr Addition on Corrosion Properties of Mg-5Al-2Si Alloy (Mg-5Al-2Si 합금의 조직 및 부식특성에 미치는 Sb, Sr 첨가의 영향)

  • Jeon, Jongjin;Lee, Sangwon;Kim, Byeongho;Park, Bonggyu;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.304-309
    • /
    • 2008
  • Magnesium alloys containing $Mg_2Si$ particles, as a promising cheap heat-resistant magnesium alloy for automobile power train parts applications, are attracting more attention of both material scientists and design engineers. Modification of the Chinese script shape $Mg_2Si$ particle is a key for using this alloy in sand or permanent mould casting. In the present work, the modification effect of Sr and Sb on the corrosion properties of the Mg-5Al-2Si alloy was investigated. Sr or Sb addition promoted the formation of fine polygonal shape $Mg_2Si$ particles by providing the nucleation sites. Sr was more effective element than Sb for shape modification of Chinese script shape $Mg_2Si$. Such improved microstructure of the modified alloy resulted in large improvement in corrosion resistance as compared to unmodified Mg-5Al-2Si alloy.

The Effect of Additives on Twining in ZnO Varistors

  • Han, Se-Won;Kang, Hyung-Boo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.207-212
    • /
    • 1998
  • By comparison of the experimental results in two systems of ZnO varistors, it's appear that Sb2O3 is the indispensable element for twining in ZnO varistors and the Zn7Sb2O12 spinel acts as the nucleus to form twins. Al2O3 is not the origin of twining in ZnO varistor, but it was found that Al2O3 could strengthen the twining and form a deformation twining by ZnAl2O4 dragging and pinning effect. The inhibition ratios of grain and nonuniformity of two systems ZnO varistors increase with the increase of Al2O3 content. The twins affect the inhibition of grain growth, the mechanism could be explained follow as: twins increase the mobility viscosity of ZrO grain and grain boundary, and drag ZrO grain and liquid grain boundary during the sintering, then the grain growth is inhibited and the microstructure becomes more uniform.

  • PDF

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.

Effects of barrier height on electron scattering mechanisms in $\delta-doped$ InAlAs/InGaAs/InAlAs Heterostructures

  • Park, H.S.;Vang, S.J.;Kim, J.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.955-959
    • /
    • 2004
  • The effects of conduction band offset on 2 dimensional electron gas (2DEG) in N-InAlAs(AlAsSb)/InGaAs/InAlAs (AlAsSb) metamorphic heterostructures (MMHS) are studied. A combination of the Shubnikov-deHaas oscillations and the Hall measurements is used to investigate the electron transport properties of these structures. The mobility in the second subband is higher than that in the first subband in all heterostructures. This is attributed to the fact that electrons in the first subband we, on average, closer to the interface and are therefore scattered more strongly by ionized impurities. The results suggest that intersubband scattering rate is more dominant in structures with higher conduction band offset whereas alloy scattering is found to be more dominant in the higher band offset system.

  • PDF

A Study on the Effect of Modifiers Affecting the Modification of the Al-Si Alloys (Al-Si 합금의 개량화에 미치는 각종 개량화제의 영향에 관한 연구)

  • Park, Joon-Peuo;Kim, Kyoung-Min;Cho, Soon-Hyung;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.314-322
    • /
    • 1991
  • In this study, Na, Li, Sb, Sr were added as the modifiers to improve the mechanical proper ties of Al-Si alloys and their effects were compared one another Thermal analysis was carried out to measure the degree of undercooling, that is, the basic mechanism of modifying effect. The measurements of holding time and analyses of components of Al-Si alloys were carried out to compare the fading of the modifiers. Greater degree of undercooling was measured from the modified alloy than the normal alloys. In the modified alloy, the shape of Si was changed into a fine fiber phase or a lamellar phase from the coarse plate phase. There are not modifying effect of Sb below the $1.5^{\circ}C$ /sec of cooling rate. As the cooling rate increases, similar effects appears in the non-modified alloys like the modified alloys. Na and Li were faded in short time and were difficult to control on the melt, but Sb and Sr were scarcely faded for 6 hours of holding and were easy to control on the melt. Na and Sr are the good modifiers in terms of microstructure. Sb is the best modifier, but Na, Li are the inadequate modifiers in terms of fading.

  • PDF

Influence of Sb Addition on Microstructure, Mechanical Properties and Electric Conductivity of Aluminum (알루미늄의 Sb 첨가에 따른 미세조직, 전기전도도 및 기계적 특성 변화)

  • Hyo-Sang, Yoo;Yong-Ho, Kim;Byoung-Kwon, Lee;Eun-Chan, Ko;Seong-Hee, Lee;Sang-Chan, Lee;Hyeon-Taek, Son
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.489-495
    • /
    • 2022
  • This research investigated how adding Sb (0.75, 1.0, 2.0 and 5.0 wt%) to as-extruded aluminum alloys affected their microstructure, mechanical properties, electric and thermal conductivity. The addition of Sb resulted in the formation of AlSb intermetallic compounds. It was observed that intermetallic compounds in the alloys were distributed homogenously in the Al matrix. As the content of Sb increased, the area fraction of intermetallic compounds increased. It can be clearly seen that the intermetallic compounds were crushed into fine particles and homogenously arrayed during the extrusion process. As the Sb content increased, the average grain size decreased remarkably from 282.6 ㎛ (0.75 wt%) to 109.2 ㎛ (5.0 wt%) due to dynamic recrystallization by the dispersed intermetallic compounds in the aluminum matrix during the hot extrusion. As the Sb content increased from 0.75 to 2.0 wt%, the electrical conductivity decreased from 61.0 to 59.8 % of the International Annealed Copper Standard. Also, as the Sb content increased from 0.75 to 2.0 wt%, the ultimate tensile strength did not significantly change, from 67.3 to 67.8 MPa.