• 제목/요약/키워드: Al1050

검색결과 138건 처리시간 0.022초

열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화 (Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet)

  • 보보무로드 함라쿠로프;이철우;김인수
    • 소성∙가공
    • /
    • 제28권5호
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과 (Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties)

  • 송준영;김인규;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

대기 부식에 의해 생성된 Al1050 및 Al7075 알루미늄 합금 산화막에 대한 투과전자현미경 분석 (TEM Characterization of Oxide Films Formed on Al1050 and Al7075 Alloys under Atmospheric Corrosion Conditions)

  • 김선규;이찬형;반치범
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.447-454
    • /
    • 2017
  • Al1050 and Al7075 alloy specimens were exposed to atmospheric conditions for maximum 12 months and analyzed by Transmission Electron Microscopy (TEM) to characterize the early-stage corrosion behavior and thin surface oxide layers. By comparing of oxide films between Al1050 and Al7075 alloys, it is concluded that Al7075 has a relatively thicker surface oxide film than Al1050 but Al1050 has relatively more significant oxygen penetration through grain boundaries. The oxygen penetration through grain boundaries appeared to be influenced by intermetallic particles at the grain boundary. In the case of aluminum alloys, localized corrosion like pitting or intergranular corrosion should be considered as well as uniform corrosion when estimating the atmospheric corrosion rate.

24개월 대기 노출된 Al1050 및 Al7075 알루미늄 합금 산화막에 대한 투과전자현미경 분석 (TEM Analysis on Oxide Films of Al1050 and Al7075 Exposed to 24-month Atmospheric Conditions)

  • 김대건;김가림;최원준;반치범
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.62-71
    • /
    • 2019
  • Al1050 and Al7075 alloy specimens were exposed to atmospheric conditions for 24 months and analyzed by Transmission Electron Microscopy to characterize their corrosion behavior and oxide film characteristics, especially focusing on intergranular corrosion or oxidation. In general, the intergranular oxygen penetration depth of Al1050 was deeper than Al7075. Since O and Si signals were overlapped at the oxidized grain boundaries of Al1050 and Mg is not included in Al1050, it is concluded that Si segregated along the grain boundaries directly impacts on the intergranular corrosion of Al1050. Cr-Si or Mg-Si intermetallic particles were not observed along the grain boundaries of Al7050, but Mg-Si particle was barely observed in the matrix. 10-nm size Mg-Zn particles were also found all over the matrix. Mg was mainly observed along the oxidized grain boundary of Al7075, but Si was not detected due to the Mg-Si particle formation in the matrix and relatively low concentration of Si in Al7075. Therefore, it is thought that Mg plays an important role in the intergranular corrosion of Al7075 under atmospheric corrosion conditions.

비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화 (Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet)

  • 남수권;정해봉;김인수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

고체적률 TiB2-Al1050 금속복합재료의 미세조직 및 기계적 특성 연구 (Study on the Microstructure and Mechanical Properties of High Volume Fraction TiB2-Al1050 Metal Matrix Composites)

  • 고성민;박현재;이영환;신상민;이동현;조일국;이상복;이상관;조승찬
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.1-5
    • /
    • 2019
  • 본 연구에서는 액상가압성형공정을 이용하여 고체적률 $TiB_2$ 입자가 균일하게 분산된 알루미늄 복합재료를 제조하고 미세조직과 기계적 물성을 분석하였다. 제조된 알루미늄 복합재료 내에 $TiB_2$는 약 56 Vol.% 존재하였으며 Al1050 기지재 내부에 $TiB_2$ 세라믹 강화재의 균일한 분산에 의한 분산강화 효과로 경도는 230.5 Hv로써 기지재(Al1050) 대비 약 10배, 인장강도는 306.4 MPa로 약 4.5배, 압축항복강도는 581.7 MPa로 약 9.8배 증가하였다.

냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding)

  • 조상현;이성희
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.

Al 1050, 5020 판재의 성형성에 관한 실험적 고찰 (An Experimental Study On The Formability of Aluminum 1050 and 5052 Sheet Metal)

  • 강용기;박진욱;문영훈
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.27-34
    • /
    • 2000
  • Sheet metal formabilities for aluminum 1050 and 5052 were experimentally investigated in this study. Deep drawability, bendability and stretch formability were measured at each process condition and correlated with tensile properties of sheet metal. To compare the formabilities of aluminum 1050 and 5052 sheets with those of steel sheets, deep drawing quality(DDQ) steel sheets are also tested at the same test conditions. Through the experimental studies, influential process variables for each forming process were obtained and correlated with the tensile properties. The comparisons of sheet metal formabilities with those of steed sheets showed that aluminum 1050 and 5052 is inherently deficient in formability than steel sheets but Al 5052 that has highter n and r value than al 1050 showed better formabilities.

  • PDF

Al 1050 합금에 과공정 Al-Si 합금의 레이저 클래딩에서 평균출력의 영향에 대한 연구 (Effects of Average Power on Laser Cladding of Hypereutectic Al-Si Alloy on Al 1050 Alloy)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.88-93
    • /
    • 2011
  • This study produced hypereutectic Al-Si clad layer on 1050 Al alloy by a novel laser cladding method. Pure Si powder was mixed with organic binder to make fluid paste which could be screen-printed on the 1050 Al alloy plate. Pulsed Nd:YAG laser was irradiated on the Si paste layer to melt and alloy with Al substrate. Different laser power of 99 W, 179 W and 261 W, was used to see the difference of the microstructure, composition and hardness of the clad layers. When laser power of 179 W was used, the clad layer had overall Si content of 38wt% and composed of fine primary Si particles and fine eutectic phase. At laser power of 261 W, the clad layer had overall Si content of 24wt% and composed of mainly fine eutectic phase. Vickers hardness of HV176.7 and HV150.3 on the clad layer was obtained at laser power of 179 W and 261 W, respectively.