DOI QR코드

DOI QR Code

TEM Characterization of Oxide Films Formed on Al1050 and Al7075 Alloys under Atmospheric Corrosion Conditions

대기 부식에 의해 생성된 Al1050 및 Al7075 알루미늄 합금 산화막에 대한 투과전자현미경 분석

  • Kim, Sungyu (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Chanhyeong (School of Mechanical Engineering, Pusan National University) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan National University)
  • 김선규 (부산대학교 기계공학부) ;
  • 이찬형 (부산대학교 기계공학부) ;
  • 반치범 (부산대학교 기계공학부)
  • Received : 2017.10.18
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

Al1050 and Al7075 alloy specimens were exposed to atmospheric conditions for maximum 12 months and analyzed by Transmission Electron Microscopy (TEM) to characterize the early-stage corrosion behavior and thin surface oxide layers. By comparing of oxide films between Al1050 and Al7075 alloys, it is concluded that Al7075 has a relatively thicker surface oxide film than Al1050 but Al1050 has relatively more significant oxygen penetration through grain boundaries. The oxygen penetration through grain boundaries appeared to be influenced by intermetallic particles at the grain boundary. In the case of aluminum alloys, localized corrosion like pitting or intergranular corrosion should be considered as well as uniform corrosion when estimating the atmospheric corrosion rate.

Keywords

References

  1. ASM International, ASM Handbook Vol 13A Corrosion: Fundamentals, Testing, and Protection, 2003, pp. 196-209.
  2. O. Lunder, K. Nisancioglu, The Effect of Alkaline- Etch Pretreatment on the Pitting Corrosion of Wrought Aluminum, Corrosion 44 (1988) 414-422. https://doi.org/10.5006/1.3583956
  3. M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, P. Marcus, Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2, Corros. Sci. 52 (2010) 562-578. https://doi.org/10.1016/j.corsci.2009.10.015
  4. M. Poltavtseva, A. Heyn, E. Boese, Long term corrosion behavior of clad aluminum materials under different atmospheric conditions, Mater. Corros. 64 (2013) 723-730. https://doi.org/10.1002/maco.201206962
  5. T. F. Otero, A. Porro, A. S. Elola, Prediction of Pitting Probability on 1050 Aluminum in Environmental Conditions, Corrosion 48 (1992) 785-791. https://doi.org/10.5006/1.3316000
  6. S. Sun, Q. Zheng, D. Li, J. Wen, Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments, Corros. Sci. 51 (2009) 719-727. https://doi.org/10.1016/j.corsci.2009.01.016
  7. T. Zhang, Y. He, R. Cui, T. An, Long-Term Atmospheric Corrosion of Aluminum Alloy 2024- T4 in a Coastal Environment, J. Mater. Eng. Perform. 24 (2015) 2764-2773. https://doi.org/10.1007/s11665-015-1541-y
  8. X. K. Yang, L. W. Zhang, S. Y. Zhang, M. Liu, K. Zhou, X. L. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Mater. Corros. 68 (2017) 529-535. https://doi.org/10.1002/maco.201609201
  9. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native airformed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci. 87 (2014) 150-155. https://doi.org/10.1016/j.corsci.2014.06.022
  10. Y. S. Kim, H. K. Lim, J. J. Kim, W. S. Hwang, and Y. S. Park, Corrosion cost and corrosion map of Korea-Based on the data from 2005 to 2010, Corros. Sci. Tech. 10 (2011) 52-59.
  11. International Organization for Standardization (ISO), Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation, ISO 9223:2012(E) (2012).
  12. P. R. Roberge, R. D. Klassen and P. W. Haberecht, Atmospheric Corrosivity Modeling - A Review, Mater. Des. 23 (2002) 321-330. https://doi.org/10.1016/S0261-3069(01)00051-6
  13. A. A. Mikhailov, J. Tidblad, and V. Kucera, The Classification System of ISO 9223 Standard and the Dose-Response Functions Assessing the Corrosivity of Outdoor Atmospheres, Prot. Met. 40 (2004) 541-550. https://doi.org/10.1023/B:PROM.0000049517.14101.68
  14. American Society for Testing and Materials (ASTM) International, ASTM G50-10 Standard Practice for Conducting Atmospheric Corrosion Tests on Metals (2010).
  15. T. J. Harrison, B. R. Crawford, M. Brandt, G. Clark, Modelling the effects of intergranular corrosion around a fastener hole in 7075-T651 aluminium alloy, Comput. Mater. Sci. 84 (2014) 74-82. https://doi.org/10.1016/j.commatsci.2013.11.033
  16. R. Oltra, L. Colard, R. A. Bonzom, Novel methodology to study localized corrosion under atmospheric simulated corrosion conditions: Toward a continuous monitoring of the corrosion damage on AA2024, Mater. Corros. 68 (2017) 311-315. https://doi.org/10.1002/maco.201609151
  17. S.P. Knight, M. Salagaras, A.R. Trueman, The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography, Corros. Sci. 53 (2011) 727-734. https://doi.org/10.1016/j.corsci.2010.11.005
  18. S. Jain, M. L. C. Lim, J. L. Hudson, J. R. Scully, Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys: A general finding, Corros. Sci. 59 (2012) 136-147. https://doi.org/10.1016/j.corsci.2012.02.018
  19. M. Navaser, M. Atapour, Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy, J. Mater. Sci. Tech. 33 (2017) 155-165. https://doi.org/10.1016/j.jmst.2016.07.008
  20. J. J. Pang, F. C. Liu, J. Liu, M. J. Tan, D. J. Blackwood, Friction stir processing of aluminium alloy AA7075: Microstructure, surface chemistry and corrosion resistance, Corros. Sci. 106 (2016) 217-228. https://doi.org/10.1016/j.corsci.2016.02.006
  21. W. Zhang, S. Ruan, D.A. Wolfe, G.S. Frankel, Statistical model for intergranular corrosion growth kinetics, Corros. Sci. 45 (2003) 353-370. https://doi.org/10.1016/S0010-938X(02)00090-2
  22. T.-S. Huang, S. Zhao, G.S. Frankel, D.A. Wolfe, A statistical model for localized corrosion in 7xxx aluminum alloys, Corrosion 63 (2007) 819-827. https://doi.org/10.5006/1.3278431
  23. Mary Lyn C. Lim a, Robert Matthews, Michael Oja b, Robert Tryon b, Robert G. Kelly a, John R. Scully, Model to predict intergranular corrosion propagation in three dimensions in AA5083-H131, Mater. Des. 96 (2016) 131-142. https://doi.org/10.1016/j.matdes.2016.01.089