• Title/Summary/Keyword: Al-Fe

Search Result 2,729, Processing Time 0.029 seconds

Fabrication of Al2O3/Fe-Ni Nanocomposites by Atmosphere-controlled Sintering and their Properties (소결분위기 제어에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 특성)

  • Lee, Hong-Jae;Jeong, Young-Keun;Oh, Sung-Tag;Lee, Jai-Sung;Sekino, Tohru
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate an effect of sintering atmosphere on microstructure and properties of metallic particle dispersed ceramic based composites, the powder mixtures of $Al_2O_3$/Fe-Ni, synthesized by chemical solution process, were hot-pressed under different atmospheres such as hydrogen or argon gas and different sintering temperature. Hot-pressed composite in a hydrogen atmosphere exhibited less reaction phase of $FeAl_2O_4$ and enhanced mechanical properties than that in an argon atmosphere. Furthermore, decreasing hot-pressing temperature produced a refinement of ceramic matrix and metallic dispersion particles as well as improvement of mechanical properties. The change of mechanical properties in the composites with different sintering conditions was explained by microstructural characteristics relating to reaction phase formation.

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.

Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High Frequency Induction Heated Combustion Synthesis (고주파유도가열 연소합성에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료 제조)

  • Park, Na-Ra;NamKung, Hoon;Ko, In-Yong;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • Nanopowders of $Co_3O_4$ and FeAl were fabricated by high energy ball milling. Dense 4.25 $Co_{0.53}Fe_{0.47}-Al_2O_3$ composite was simultaneously synthesized and consolidated by high frequency induction heated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure of 80 MPa.

Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High FrequencyInduction Heated Combustion Synthesis and Sintering (펄스 전류 활성 연소합성과 소결에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료제조)

  • Lee, Dong-Mok;Jo, Kwang-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.344-348
    • /
    • 2009
  • Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ composite was simultaneously synthesized and consolidated by pulsed current activated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. Dense $4.25Co_{0.53}Fe_{0.47}-Al_{2}O_{3}$ with relative density of up to 96% was produced under simultaneous application of 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $6MPa{\cdot}m^{1/2}$ and $570kg/mm^{2}$ respectively.

Properties and Fabrication of 5Cu0.6Fe0.4-Al2O3 Composite by High Frequency Induction Heated Sintering (고주파유도가열 소결에 의한 5Cu0.6Fe0.4-Al2O3 복합재료제조 및 기계적 성질)

  • Lee, Dong-Mok;Song, Jun-Young;Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.754-758
    • /
    • 2009
  • Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ composite was consolidated from mechanically synthesized powders by high frequency induction heating method within 2 min. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure. Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $7.6MPa{\cdot}m^{1/2}$ and $844kg/mm^{2}$ respectively.

Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics (NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

High Temperature Oxidation Behavior and Surface Defect in Fe-25Mn-1.5Al-0.5C Steel (Fe-25Mn-1.5Al-0.5C강의 고온 산화 거동과 표면 결함)

  • Park, Shin Hwa;Hong, Soon Taik;Kim, Tai Wung;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.158-162
    • /
    • 2000
  • The high temperature oxidation behavior and the surface defect in Fe-25Mn-1.5A1-0.5C steel was investigated by XRD (X-ray Diffractin) and electron microscopy. The intra- and inter-granular oxides were formed by the selective oxidation of manganese and aluminum, which were identified to MnAl2O4 phase. Aluminum nitride (AlN) was formed in front of these oxides. The ${\gamma}$-matrix was transformed to ${\alpha}$- and ${\varepsilon}$- phases by the selective oxidation of manganese. The surface defect, micro-scab was induced by the difference of the high temperature ductility between the matrix and the inter-granular oxide.

  • PDF

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF

Mineral Chemistry of Talc from Different Origins in the Dongyang Talc Deposit (동양활석광상에서 산출되는 서로 다른 기원의 활석에 대한 광물화학)

  • Shin Dongbok;Lee Insung;Koh Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.357-364
    • /
    • 2004
  • Mineral chemistry of talc from the Dongyang talc deposits was studied to characterize the differences between dolomite-origin talc (talc I) and tremolite-origin talc (talc II). Average iron and aluminum contents are higher in talc II, 2.18 wt% FeO and 0.31 wt% $Al_2$O$_3$), than in talc I, 1.48 wt% FeO and 0.08 wt% $Al_2$O$_3$). Consistently lower Mg/(Mg+Fe+Mn) ratios and higher AI concentrations with uniform values of talc II compared to talc I seem to reflect the compositional differences of the original materials, tremolite and dolomite, respectively. Relative enrichment of Al as well as Fe in talc II compared to tremolite can be attributed to their immobile behaviors during alteration process and the rapid diffusion of hydrothermal fluids, which can accelerate instantaneous nucleation with immaturity growth of talc II. Increase in the concentrations of talc II can lower the ore grade by increasing concentrations of impure components such as AI and Fe, and by abundant presence of tremolite as well.

THE SPIN REORIENTATION AND THE MAGNETI ANISOTROPY IN $R_{2}Fe_{17-x}M_{x}C_{y}$ (R=Er, Tm, M=Al, Ga)

  • Ohno, K.;Urakabe, T.;Agata, M.;Saito, T.;Shinagawa, K.;Tsushima, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.437-441
    • /
    • 1995
  • In order to consider the change of the magnetic anisotropy energy by the Al or Ga substitution for Fe, spin reorientation temperature $T_{SR}$ and Curie temperature $T_{c}$ in $R_{2}Fe_{17-x}M_{x}$ (R=Er, Tm, M=Al, Ga) have been studied both experimentally and theoretically. As a result, $T_{SR}$ and $T_{c}$ for $R_{2}Fe_{17-x}M_{x}$ shift toward higher temperature side with x ($0{\leq}x{\leq}2.0$). The ${\Delta}T_{c}$ the difference of the $T_{c}'s$ between $Er_{2}Fe_{17-x}Al_{x}$ and $Tm_{2}Fe_{17-x}Al_{x}$, is always about 10 K independent of Al-content. But in the case of Ga substitution, the ${\Delta}T_{c}$ increases with Ga-content ; especially, the ${\Delta}T_{c}$ for x=2.0 is 43 K. This value of the ${\Delta}T_{c}$ is not explained by only the difference of the de Gennes fator G between $Er^{3+}$ and $Tm^{3+}$, but it is thought that the values of $J_{ErFe}$ and $J_{TmFe}$ themselves are not equal. ($J_{AB}$ : the exchange interaction between A and B.)

  • PDF