DOI QR코드

DOI QR Code

Fabrication of 4.25 Co0.53Fe0.47-Al2O3 Composite by High Frequency Induction Heated Combustion Synthesis

고주파유도가열 연소합성에 의한 4.25 Co0.53Fe0.47-Al2O3 복합재료 제조

  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • NamKung, Hoon (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
  • 박나라 (전북대학교 신소재공학부 공업기술 연구센터) ;
  • 남궁훈 (전북대학교 신소재공학부 공업기술 연구센터) ;
  • 고인용 (전북대학교 신소재공학부 공업기술 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 공업기술 연구센터)
  • Published : 2009.04.28

Abstract

Nanopowders of $Co_3O_4$ and FeAl were fabricated by high energy ball milling. Dense 4.25 $Co_{0.53}Fe_{0.47}-Al_2O_3$ composite was simultaneously synthesized and consolidated by high frequency induction heated combustion method within 2 min from mechanically activated powders. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure of 80 MPa.

Keywords

References

  1. L. Ceschini, G. Minak and A. Morri: Composites Science and Technology., 66 (2006) 333 https://doi.org/10.1016/j.compscitech.2005.04.044
  2. S. C. Tjong and Z. Y. Ma: Mater Sci Eng., 29 (2000) 49 https://doi.org/10.1016/S0927-796X(00)00024-3
  3. D. J. Lloyd: Int Mater Rev., 39 (1994) 1 https://doi.org/10.1179/imr.1994.39.1.1
  4. J. M. Torralba and F. Velasco: J Mater Proce Tech., 133 (2006) 203 https://doi.org/10.1016/S0924-0136(02)00234-0
  5. R. Fan, B. Liu, J. Zhang, J. Bi and Y. Yin: Mater. Chem. Phys. 91 (2005) 140 https://doi.org/10.1016/j.matchemphys.2004.11.004
  6. S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon and I. Y. Ko: Scripta Materialia., 58 (2008) 425 https://doi.org/10.1016/j.scriptamat.2007.10.029
  7. I. P. Borovinskaya, A. G. Merzhanov, N. P. Novikov and A. K. Filonenko: Combust. Explos. Shock Waves., 10 (1974) 2 https://doi.org/10.1007/BF01463777
  8. A. G. Merzhanov, G. G. Karyuk, I. P. Borovinskaya, V. A. Prokudina, E. G. Dyad, Ko: Sov. Powder Metall. Met Ceram., 20 (1981) 709 https://doi.org/10.1007/BF00791050
  9. M. S. El-Eskandarany: J. Alloys & Compounds., 305 (2000) 225 https://doi.org/10.1016/S0925-8388(00)00692-7
  10. L. Fu, L. H. Cao and Y. S. Fan: Scripta Materialia., 44 (2001) 1061 https://doi.org/10.1016/S1359-6462(01)00668-6
  11. I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon and K. T. Hong: Materials Science Forum., 534-539 (2007) 525
  12. Z. Fang and J. W. Eason: Int. J. of Refractory Met. & Hard Mater., 31 (1995) 297 https://doi.org/10.1016/0263-4368(95)92675-A
  13. A. I. Y. Tok, I. H. Luo and F. Y. C. Boey: Mater Sci Eng A., 383 (2004-2005) 229
  14. C. Suryanarayana and M. Grant Norton: Plenum Press., New York (1998) 207
  15. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren: J. Am. Ceram Soc., 85 (2002) 1921 https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  16. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kumar: Appl. Phys. Lett., 85 (2004) 573 https://doi.org/10.1063/1.1774268
  17. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir: Intermetallics., 12 (2004) 589 https://doi.org/10.1016/j.intermet.2004.02.005
  18. J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir: Acta Mater., 51 (2003) 4487 https://doi.org/10.1016/S1359-6454(03)00284-2