DOI QR코드

DOI QR Code

Preparation of Ultrafine TiCN Powders by Mg-reduction of Metallic Chlorides

마그네슘의 금속염화물 환원에 의한 초미립 TiCN 분말합성

  • Lee, Dong-Won (Powder Technology Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Jin-Chun (School of Materials Science and engineering, Ulsan University) ;
  • Kim, Yong-Jin (Powder Technology Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Byoung-Kee (Powder Technology Research Group, Korea Institute of Materials Science (KIMS))
  • 이동원 (한국기계연구원 부설 재료연구소) ;
  • 김진천 (울산대학교 첨단소재공학부) ;
  • 김용진 (한국기계연구원 부설 재료연구소) ;
  • 김병기 (한국기계연구원 부설 재료연구소)
  • Published : 2009.04.28

Abstract

The ultrafine titanium carbonitride particles ($TiC_{0.7}N_{0.3}$) below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide ($TiC_{0.7}$) particles were produced by the magnesium reduction at 1123K of gaseous $TiC_{l4}+xC_2Cl_4$ and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with $TiC_{0.7}$. And final $TiC_{0.7}N_{0.3}$ phase was obtained by nitrification under normal $N_2$ gas at 1373K for 2 hrs. The purity of produced $TiC_{0.7}N_{0.3}$ particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.

Keywords

References

  1. S. Zhang: Mater. Sci. Eng., A163 (1993) 141 https://doi.org/10.1016/0921-5093(93)90588-6
  2. N. V. Alexeev, I. L. Balikhin, E. N. Kurkhin, A. V. Samokhin, E. V. Troiskaya and V. N. Troiskij: Fizika i Khimiya Obrabotki Materialov., 1 (1995) 247
  3. T. Licko, V. Figusch and J. Puchyiva: J. Eurp. Ceram. Soc., 5, (1989) 257 https://doi.org/10.1016/S0955-2219(89)80009-3
  4. Junhui Xiang, Zhipeng Xie, Yong Huang and Hanning Xiao: J. Eurp. Ceram. Soc., 20 (2000) 933 https://doi.org/10.1016/S0955-2219(99)00210-1
  5. V. D. Parkhomenko, G. N. Serdyuk and Yu. I. Kransnokutskii: Phys. & Chem. Mater. Treat., 20 (1986) 429
  6. B. Rauschenbach: J. mater. Sci., 21 (1986) 395 https://doi.org/10.1007/BF01145500
  7. M. Eslamloo-Grami and Z. A. Munir: J. mater. Res., 11(12) (1996) 2968 https://doi.org/10.1557/JMR.1996.0377
  8. G. W. Elger, D. E. Traut, G. J. Slavens and S. J. Gerdemann: Metall. Trans. B., 20B (1989) 493 https://doi.org/10.1007/BF02654598
  9. F.-S. Yin, L. Zhou, Z.-F. Xu, B. Xue and X.-B. Jiang: J. Alloys Comp., 470 (2009) 369 https://doi.org/10.1016/j.jallcom.2008.02.073
  10. Roya Aghabazadeh, Ali Reza Mirhabibi, Brian Rand, Sara Banijamali, Jalil Pourasad and Mehdi Ghahari: Surf. Sci. 601 (2007) 2881 https://doi.org/10.1016/j.susc.2006.12.038
  11. D. W. Lee, J. H. Ahn and H. Jung: J. Mater. Res., 22 (2007) 233 https://doi.org/10.1557/jmr.2007.0024
  12. D. W. Lee, S.Alexandrovskii and B. K. Kim: Mater. Chem. and Phys., 88 (2004) 23 https://doi.org/10.1016/j.matchemphys.2004.02.005