DOI QR코드

DOI QR Code

Fabrication of Al2O3/Fe-Ni Nanocomposites by Atmosphere-controlled Sintering and their Properties

소결분위기 제어에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 특성

  • Lee, Hong-Jae (Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young-Keun (Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Sung-Tag (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Sekino, Tohru (Institute of Scientific and Industrial Research, Osaka University)
  • 이홍재 (요업기술원 나노세라믹센터) ;
  • 정영근 (요업기술원 나노세라믹센터) ;
  • 오승탁 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과) ;
  • Published : 2002.01.01

Abstract

To investigate an effect of sintering atmosphere on microstructure and properties of metallic particle dispersed ceramic based composites, the powder mixtures of $Al_2O_3$/Fe-Ni, synthesized by chemical solution process, were hot-pressed under different atmospheres such as hydrogen or argon gas and different sintering temperature. Hot-pressed composite in a hydrogen atmosphere exhibited less reaction phase of $FeAl_2O_4$ and enhanced mechanical properties than that in an argon atmosphere. Furthermore, decreasing hot-pressing temperature produced a refinement of ceramic matrix and metallic dispersion particles as well as improvement of mechanical properties. The change of mechanical properties in the composites with different sintering conditions was explained by microstructural characteristics relating to reaction phase formation.

소결 분위기가 금속입자분산 세라믹스기 복합체의 미세 조직 및 물성에 미치는 영향에 대하여 조사하고자 화학적 방법으로 합성한 $Al_2O_3$/Fe-Ni 나노복합분말을 수소 및 아르곤 가스 분위기, 또한 소결온도 등으로 제어하여 열간가압 소결하였다. 수소분위기에서 소결한 복합체는 아르곤분위기의 경우보다 반응상 $FeAl_2O_4$의 형성이 억제되었으며, 증가된 파괴강도 및 인성 값을 나타내었다. 또한, 소결 온도를 낮추었을 경우 기지상 및 금속 분산상의 미세화와 향상된 기계적 성질을 얻을 수 있었다. 소결 조건에 따른 기계적 특성의 변화는 주로 반응상의 형성과 관련된 미세조직 특성에 의존하는 것으로 해석하였다.

Keywords

References

  1. M. R. HIe, N. Claussen and A. H. Heuer, 'Transformation and Microcrack Toughening as Complementary Precesses in ZrO$_{2}$-toughened Al$_{2}$O$_{3}$,' J. Am. Ceram. Soc., 69(3), 195-197 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07405.x
  2. T. K. Kang, O. J. Kwon and K. L. Weisskopf, 'Mechanical Properties of AhOrSiC Whisker Composite Materials,' J. Kor. Ceram. Soc., 23(3), 62-66 (1986)
  3. K. Cho, S. Lee, S. G. Pyo and Y. W. Chang, 'Dynamic and Quasi-static Fracture Toughness of Al$_{2}$O$_{3}$ and Al$_{2}$O$_{3}$ Ceramic Matrix Composite Reinforced with SiC Whiskers,' J. Kor. Ceram. Soc., 27(4), 457-464 (1990)
  4. K. Niihara, 'New Design Concept of Structural Ceramics Ceramic Nanocomposites,' J. Ceram. Soc. Jpn., 99(10), 974-982 (1991) https://doi.org/10.2109/jcersj.99.974
  5. T. Sekino and K. Niihara, 'Microstructural Characteristics and Mechanical Properties for AlzOfMetal Nanocomposites,' Nanostruct. Mater., 6(5-8), 663-666 (1995) https://doi.org/10.1016/0965-9773(95)00145-X
  6. T. Nakayama, T. Sekino, Y-H. Choa and K. Niihara, 'Fabrication of Nano-sized Metal Dispersed Magnesia Based Composites and Related Mechanical and Magnetic Properties,' Kor. J. Ceram., 5(4), 395-399 (1999)
  7. T. Sekino and K. Niihara, 'Fabrication and Mechanical Properties of Fine-tungsten-dispersed Alumina-based Nanocomposites,' J. Mater. Sci., 32(15), 3943-3949 (1997) https://doi.org/10.1023/A:1018668900343
  8. T. Sekino, T. Nakajima, S. Ueda and K. Niihara, 'Reduction and Sintering of a Nickel-dispersed-alumina Composite and Its Properties,' J. Am. Ceram. Soc., 80(5),1139-1148 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02956.x
  9. S-T. Oh, M. Sando and K. Niihara, 'Preparation and Properties of AluminaINickel-Cobalt Alloy Nanocomposites,' J. Am. Ceram. Soc., 81(11), 3013-3015 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02729.x
  10. J. S. Lee, S-T. Oh and S. Narnkung, 'Processing and Magnetic Properties of Ni-Fe Alloy Dispersed Alumina Nanocomposites,' in Synthesis, Functional Properties and Applications of Nanostructures, Vol. 676, MRS Conference Proceedings. Edited by H.W. Hahn et at., MRS, Warrendale, in print
  11. R. L. Coble, 'Sintering Alumina: Effect of Atmosphere,' J. Am. Ceram. Soc., 45(3), 123-127 (1988) https://doi.org/10.1111/j.1151-2916.1962.tb11099.x
  12. Y-K. Paek, K-Y. Eun and S-J. L. Kang, 'Effect of Sintering Atmosphere on Densification of MgO-doped Al$_{2}$O$_{3}$,' J. Am. Ceram. Soc., 71(8), C380-382 (1988)
  13. E. P. Wohlfarth, Ferromagnetic Materials, Vo1. 2, pp. 123, North-Holland Publishing Co., Amsterdam, 1980
  14. G. R. Antis, P. Chantikul, B. R. Lawn and D. B. Marshall, 'A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,' J. Am. Ceram. Soc., 64(9), 539-543 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  15. C. S. Smith, 'Grains, Phase and Interphases: An Interpretation of the Microstructure,' Trans. Metall. Soc. A/ME, 175, 15-51 (1948)
  16. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, pp. 783-790, John Wiley and Sons, New York, 1976
  17. B. Budiansky, J. C. Amazigo and A. G. Evans, 'Small-scale Crack Bridging and the Fracture Toughness of Particulatereinforced Ceramics,' J. Mech. Phys. Solids, 36, 167-187 (1988) https://doi.org/10.1016/S0022-5096(98)90003-5
  18. T. Ohji, Y-K. Jeong, Y-H. Choa and K. Niihara, 'Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,' J. Am. Ceram. Soc., 81(6), 1453-1460 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02503.x