• Title/Summary/Keyword: Al-Cu-Mg

Search Result 488, Processing Time 0.026 seconds

A Study on the Electrochemical Characteristics of Al-Si Casting Alloys in NaCl Solution (NaCl 수용액에서 Al-Si계 주조용 합금의 전기화학적 특성 연구)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.29-33
    • /
    • 2014
  • The electrochemical characteristics of Al-Si casting alloys (Al-10%Si, Al-9%Si, Al-7%Si) in 3.5% NaCl solution at room temperature was studied using potentiodynamic techniques. The electrochemical values of corrosion potential($E_c$), corrosion current density($I_c$) and corrosion rate(mpy) were examined. The Al-Si alloys had several compounds such as $Mg_2Si$, ${\pi}$-$Al_8Si_6Mg_2Fe$ and $Al_2CuMg$ which could affect corrosion resistance significantly. The potentiodynamic polarization curve exhibited typical active behavior in anodic polarization curve. The major corrosion mechansim for the Al-Si alloys were pitting and grain boundary corrosion. As increasing Si and Cu contents, their corrosion resistance was decreased.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

Investigation on the Sintering Behavior of P/M Al-Zn-Mg-Cu Alloy

  • Shahmohammadi, M.;Simchi, A.;Danninger, H.;Arvand, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.536-537
    • /
    • 2006
  • In the present work, the sintering behavior of high strength Al-5.6Zn-2.5Mg-1.6Cu (in wt.%) alloy compacts prepared from elemental powders was investigated. Microstructural evaluation was accompanied by XRD and DSC methods in order to determine the temperature and chemical composition of the liquid phases formed during sintering. It was found that three transient liquid phases are formed at 420, 439 and 450 $^{\circ}C$. Microstructural study revealed the progressive formation of sintered contacts due to the presence of the liquid phases, although the green compact expands as a result of the melt penetration along the grain boundaries. While Zn melts at ${\sim}420\;^{\circ}C$, the intermetallic phases formed between Al and Mg were found to be responsible for the formation of liquid phase and the dimensional change at higher temperatures.

  • PDF

The Effects of Al-Alloying Elements on the Melt Oxidation(II, Oxide Layer Shape and Microstructure) (Al-합금의 원소가 용융산화에 미치는 영향(ll. 산화층 형상과 미세구조))

  • Jo, Chang-Hyeon;Gang, Jeong-Yun;Kim, Il-Su;Kim, Cheol-Su;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.660-667
    • /
    • 1997
  • AI-Mg-합금의 용융산화에 의해 생성되는 AlO$_{2}$O$_{3}$-복합재료의 미세구조에 미치는 합금원소의 영향을 연구하였다. AI-1Mg 합금과 AI-3Mg 합금을 기본으로하여 Si, Zn, Sn, Cu, Ni, Ca, Ce를 1, 3, 5 %를 무게비로 첨가하였다. 각 합금을 1473K에서 20시간 유지하여 산화시킨 후 산화층의 거시적 형상과 미세구조를 광학현미경으로 관찰하였다. 각 미세구조의 상분율을 상분석기로 측정하였다. 산화층의 최첨단면은 SEM과 EDX로 관찰하고 분석하였다. Cu나 Ni를 첨가한 합금으로부터 성장한 산화층의 미세구조가 가장 치밀하였다. Zn이 포함된 합금으로부터 성장한 산화층 최첨단 성장면에는 ZnO가 관찰되었다. Zn이 포함되지 않은 다른 합금의 성장 전면에는 항상 MgAi$_{2}$O$_{4}$상이 관찰되었다.

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF

Microstructural Characterization of Hot Extruded Al-Zn-Mg-Cu Alloys Containing Sc (Sc을 첨가한 Al-Zn-Mg-Cu 합금 압출재의 열처리에 따른 미세구조 변화)

  • 이혜경;서동우;이상용;이경환;임수근
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The microstructural changes of Al-Zn-Mg-Cu alloy containing Sc during hot extrusion and post heat treatment were investigated. Two kinds of Al-Sc alloys with different alloying elements (B1, B2) were hot extruded to make T-shape bars at extrusion temperature of $380^{\circ}C$, then the bars were solution treated at $480^{\circ}C$ for 2hrs followed by artificial aging at $120^{\circ}C$ for 24hrs. The interior microstructure of as extruded bar consisted of elongated grains, however, fine equiaxed grains were also observed around surface. The microstructural gradient suggested that different restoration process could proceed during the hot extrusion. For B1 and B2, different grain growth behaviors were found around the surface during the post heat treatment. Rapid grain growth behavior was observed for B1 around the surface, however, it was not observed for B2. Orientation pinning, which was related with the evolution of preferred orientation, and precipitation were thought to be responsible for the rapid grain growth.

The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System (Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향)

  • Kim, Jee-Hun;Jo, Jae-Sub;Sim, Woo-Jeong;Im, Hang-Joon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.669-675
    • /
    • 2012
  • Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

Effect of Zn additions on the Mechanical Properties of High Strength Al-Si-Mg-Cu alloys (Zn 첨가량에 따른 Al-Si-Mg-Cu계 합금의 미세조직 및 기계적 특성변화)

  • Hwang, Soo-Been;Kim, Byung-Joo;Jung, Sung-Su;Kim, Dong-Gyu;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.39 no.3
    • /
    • pp.33-43
    • /
    • 2019
  • In this study, the effects of Zn additions on the mechanical properties of Al-Si-Mg-Cu alloys were investigated by increasing the amount of Zn up to 8wt.%. As the Zn content was increased up to 6 wt.%, the yield strength and elongation changed linearly without any significant changes in the size and shape of the main reinforcement phase. However, it was confirmed by SEM observation that the Mg-Zn phase formed between the reinforcement phases when the amount of Zn added exceeded 7wt.%. A Mg-Zn intermetallic compound formed between the $Mg_2Si$ phase, becoming a crack initiation point under stress. Thus, the formation of the Mg-Zn phase may cause a sharp decrease in the elongation when Zn at levels exceeding 7 wt.%. It was also found that the matrix became more brittle with increasing the Zn content. From these results, it can be concluded that the formation of the Mg-Zn intermetallic compound and the brittle characteristics of the matrix are the main causes of the remarkable changes in the mechanical properties of this alloy system

Electrical Conductivity by Addition of Zn and Cu on Mg-Zn-Cu Alloys (Mg-Zn-Cu 합금의 Zn, Cu 첨가량에 따른 전기전도도 특성)

  • Ye, Dae-Hee;Kim, Hyun-Sik;Kang, Min-Cheol;Kim, Jung-Dae;Jeoung, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.100-106
    • /
    • 2014
  • In recent years, Mg and its alloys have attracted a great deal of attention due to their low density, relatively excellent castability, and straightforward recyclability. Mg alloys have been widely applied to various industrial fields, and are representatively used in automotive and electronic parts. According to previous researches, the electrical conductivity of Mg alloys greatly decreases with increasing Al content. However, with the addition of Zn and/or Cu, the electrical conductivity of Mg alloys is maintained or slightly increased, and improved mechanical properties are obtained as well. On this basis, Mg-Zn-Cu alloys have been investigated in the present study with a focus on the effect of adding Zn and Cu on the electrical conductivity. The Zn and Cu contents ranged from 4 to 6wt.% and 0 to 1.5wt.%, respectively. Ternary Mg-Zn-Cu alloys have been prepared by gravity casting in a steel mold. In the as-casting condition, the electrical conductivity of Mg-Zn-Cu alloys showed a linear increasing trend with decreasing Zn and increasing Cu contents. Furthermore, impact values of Zn = -1.5 and Cu = 2.5 were determined for these alloys by electrical conductivity tests.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)