DOI QR코드

DOI QR Code

The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System

Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향

  • Kim, Jee-Hun (Dept. of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Jo, Jae-Sub (Dept. of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Sim, Woo-Jeong (Dept. of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Im, Hang-Joon (Dept. of Advanced Materials Engineering, Korea Polytechnic University)
  • 김지훈 (한국산업기술대학교 신소재공학과) ;
  • 조재섭 (한국산업기술대학교 신소재공학과) ;
  • 심우정 (한국산업기술대학교 신소재공학과) ;
  • 임항준 (한국산업기술대학교 신소재공학과)
  • Received : 2012.02.16
  • Published : 2012.09.25

Abstract

Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

Keywords

References

  1. W. I. Pumphrey and P. H. Jennings, J. Inst. Met, 75, 235 (1948).
  2. S. Lin, C. Aliravci, and M. O. Pekguleryuz, Metall. Mater. Trans. A 38, 1056 (2007). https://doi.org/10.1007/s11661-007-9132-7
  3. D. Eskin, L. Katgerman, Metall. Mater. Trans. A 38, 1511 (2007). https://doi.org/10.1007/s11661-007-9169-7
  4. H. F. Hall, J. Iron and steel. Inst. 15, 65 (1946).
  5. T. W. Clyne and G. J. Davies, the british foundary man, 74, 65 (1981).
  6. F. Matsuda, K. Nakata, and Y. Shimokusu, J. Japanese Welding Research Inst. 12, 81 (1983).
  7. K. S. Son, T. E. Park, J. S. Kim, S. M. Kim, and D. G. Kim, Korean J. Met. Mater. 48, 436 (2010). https://doi.org/10.3365/KJMM.2010.48.05.436
  8. M. S. Kim, T. S. Lim, K. M. Yoon, Y. J. Ko, J. M. Kim, and K. H. Kwak, KSAE, 119 (2010).
  9. B. Chamberlain and S. Watanabe, AFS Trans. 85, 133 (1977).
  10. G. K. Sigworth, O. Rios, J. Howell, M. Kaufman, AFS Trans. 112, 387 (2004).
  11. D. G. Eskin, Suyitno, and L. Katgerman, Prog. Mater. Sci. 49, 629 (2004). https://doi.org/10.1016/S0079-6425(03)00037-9
  12. Novikov II. Goryachelomkost tsvetnykh metallov I splavov, Moskow Nauka, 299 (1966).
  13. S. Lin, p. 167, Quebec University, Chicoutimi (1999).
  14. W. Feng, X. Baiqing, Z. Yongan, L. Hongwei and H. Xiaoqing, J. Alloy and Compounds 477, 616 (2009). https://doi.org/10.1016/j.jallcom.2008.10.115
  15. F. Xi-gang, J. Da-ming, M. Quing-chang, Z. Bao-you and W. Tao, Nonferrous Met. Soc. China. Trans. 16, 577 (2006). https://doi.org/10.1016/S1003-6326(06)60101-5
  16. C. Yuan-hua, L. Rui-guang, S. Zhan-pei, Z. Ji-shan, Nonferrous Met. Soc. China Trans. 21, 9 (2011). https://doi.org/10.1016/S1003-6326(11)60671-7
  17. T. W. Clyne, G. J. Davies, Met. Soc. 275 (1979).
  18. S. Li, Ph. D, Thesis, p. 124, Worcester Polytechnic Institute, Worcester (2010).
  19. I. Novikov, O. E. Grushko, Mater. Sci. Technol. 11, 926 (1995). https://doi.org/10.1179/mst.1995.11.9.926
  20. J. Zhao, G. Chen, and J. Dalian Inst. Tech. 24, 31 (1985).
  21. W. I. Pumphrey and J. V. Lyons, J. Inst. Metal. 74, 439 (1948).