• 제목/요약/키워드: Al-Cu

검색결과 2,084건 처리시간 0.027초

Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰 (LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy)

  • 김황수
    • Applied Microscopy
    • /
    • 제37권2호
    • /
    • pp.123-133
    • /
    • 2007
  • Al합금(Al-2.5Cu-1.5Mg wt.%)의 석출물 특히 S-상석출입자 $(Al_2CuMg)$ 부근의 변형장 (strain fields)에 대해 LACBED 관찰 연구가 처음으로 수행되었다. 변형장 강도에 대한 정량적 분석을 위해서는 대응되는 LACBED패턴 시뮬레이션 필요하다. 이를 위해 S-입자에 대해서 형태가 단순한 $a_s$-축을 가진 원기둥 모양을 갖고 변형장의 격자변위 벡터가 이 축에 수직 방향을 갖는다고 가정했다. 이런 단순한 모델을 가지고 변형장에 대한 관찰 패턴과 시뮬레이션 사이 합리적인 일치를 얻었다. 그러나 합금의 초기 시효 단계에서는 의미 있는 변형장이 관측되지 않았다. 따라서 이 실험의 결과로 예상되는 것은 합금의 최대 경도를 갖는 시료에는 S-상 석출 입자들이 Al-모체에 복잡한 변형장 그물망을 만들고 이것이 합금 경도에 기여 할 것으로 사료된다.

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling)

  • 이준호;박성현;이상화;손승배;이석재;정재길
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

건식법에 의한 이산화황과 산화질소의 제거(II) - Cu-Ce 및 Cu-7Al의 효율 - (Removal of S $O_{2}$ and NO by Dry Sorbent(II) - Efficiency of Cu-Ce and Cu-7Al -)

  • 신창섭
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.288-294
    • /
    • 1993
  • Flue gas control systems for small-scale combustors must be designed to provide highly effective removal of three criteria pollutants (S $O_{2}$, N $O_{x}$ and particulate matter), and must be safe, reliable and small. These requirements make dry, regenerative clean-up process particularly attractive and this paper describes a new concept for integrated pollutant control : a filter comprised of layered, gas permeable membranes that act as an S $O_{2}$ sorbant, a N $O_{x}$ reduction catalyst and a particulate filter. A mixed metal oxide sorbent, Cu-Ce was used as a sorbent/catalyst and the activity was compared with Cu-7Al. The S $O_{2}$ removal eficiency of Cu-Ce was increased with temperature increase up to 500$^{\circ}$C and the catalytic activity for NO was higher than that of Cu-7Al. By the sulfation of Cu-Ce, the reduction activity was increased at the temperature higher than 350$^{\circ}$C. The regeneration of Cu-Ce was very fast and some amount of elemental sulfar was found.

  • PDF

Selective catalytic reduction of NO by hydrocarbons over $Cu/Al_2O_3$ catalysts

  • Nam, Chang-Mo;Bernard M. Gibbs
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.201-208
    • /
    • 2000
  • The reduction of NO by hydrocarbons was investigated over Cu/Al$_2$O$_3$catalysts using a stainless steel flow reactor under highly oxidising diesel exhaust conditions(up to 15%). Three different Cu loadings(1,5 and 10wt.%) on an $Al_2$O$_3$support were prepared and characterized using spectroscopic techniques. The catalytic activity tests show that different Cu loadings as well as temperature, oxygen, and hydrocarbon concentration levels significantly influence the NO reduction. Increasing Cu loadings up to 5 and 10wt.% decreases the catalytic activities for NO reduction due to the formation of a bulk crystalline CuO phase, as observed from XRD and SEM images. In particular, the visualization of the copper dispersion on the surface using the SEM-BEI technique provides information on the extent of copper saturation, particle size, and the effects on NO reduction. However, the lower Cu loading(1 wt.%) increases the catalytic activity with a temperature window of 720-810K, thereby favoring the formation of well dispersed isolated Cu species, e.g. Cu(sup)2+ ions, which is related to selective NO reduction. The effects of other reaction parameters, such as oxygen, the hydrocarbon level and type, and byproduct emissions are further discussed.

  • PDF

Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화 ($NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature)

  • 임윤희;이주열;박병현
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Cu 및 Mg 첨가량에 따른 Al-Fe-Cu-Mg계 주조합금의 특성변화 (Influence of Cu and Zn Contents on the Properties of Al-Fe-Cu-Mg Based Casting Alloys)

  • 김정민;김남훈;신제식;김기태;고세현
    • 한국주조공학회지
    • /
    • 제34권4호
    • /
    • pp.130-135
    • /
    • 2014
  • Efforts have been made to develop new silicon-free aluminum casting alloys that possess high electrical and thermal conductivity. In this research Al-Fe-Cu-Mg alloys with various Cu and Mg contents were investigated for their various properties. As the Cu or Mg content was increased, the electrical conductivity gradually decreased, while the tensile strength of the Al-Fe-Cu-Mg alloy tended to be improved. It was found that fluidity was generally inversely proportional to the Cu content, but the alloys containing 1%Mg showed considerably low fluidity, regardless of the Cu content.

$Al_2O_3$/5vo1%Cu 나노복합재료의 제조 및 기계적특성 (Preparation and Mechanical Properties of $Al_2O_3$/5vo1%Cu Nanocomposites)

  • 오승탁;이재성
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.212-217
    • /
    • 2000
  • An optimum route to fabricate the $Al_2O_3/Cu$ nanocomposites with sound microstructure and improved mechanical properties was investigated. Microstructural investigations for the composites prepared using $Al_2O_3/Cu$-nitrate showed that fine Cu particles with average size of 150 nm were homogeneously distributed within the $Al_2O_3$ matrix grains and at the grain boundaries. Fracture strength of 953 MPa and toughness of 4.8 Mpa(equation omitted)m were measured for the composite. The strengthening and toughening of the composites are explained by the refinement of the microstructure and the crack bridging/deflection, respectively.

  • PDF

비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과 (Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy)

  • 김헌주
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

Al-Cu막의 플라즈마 식각후 부식 억제에 관한 연구 (A STUDY ON THE ANTI-CORROSION OF Al-Cu AFTER PLASMA ETCHING)

  • 김환준;김창일;권광호;김태형;서용진;장의구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1277-1279
    • /
    • 1997
  • In this study, the mechanism underlying the corrosion problem have been investigated using X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM), AES(Auger electron spectroscopy) In regard to the removal of Al-Cu corrsion, the subsequent treatment of the $SF_6$ plasma has also been completed. This work evaluated the effects of grain boundary on the AlCu after dry etching and the role of subsequent $SF_6$ plasma for the removal of AlCu corrosion.

  • PDF

복합주조공정으로 제조한 Al/Cu 하이브리드 소재의 계면특성 (Interfacial Characteristics of Al/Cu Hybrid Materials Prepared by Compound Casting)

  • 김남훈;김정민
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.141-146
    • /
    • 2015
  • Aluminum-based hybrid parts were fabricated through a compound casting process with Al or Cu inserts which can be used for applications requiring high conductivity. Because the interface stability between the insert and the aluminum matrix is important, the effects of process variables on the interfacial adhesion strength were investigated. Additions of Cu and Mg to Al melt were found to enhance the adhesion strength, though the melt fluidity was slightly deteriorated when a small amount of Mg was added. An isothermal heating process after casting further improved the strength. However AlCu intermetallic compounds formed and their thickness increased during the heating process. As a result, deterioration in the interfacial adhesion strength was observed after an excessive annealing treatment.