• Title/Summary/Keyword: Al films

Search Result 1,801, Processing Time 0.045 seconds

Development of textured ZnO:Al films for silicon thin film solar cells (실리콘 박막 태양전지용 텍스처링 ZnO:Al 박막 개발)

  • Cho, Jun-Sik;Kim, Young-Jin;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.349-349
    • /
    • 2009
  • High quality ZnO:Al films were prepared on glass substrates by in-line RF magnetron sputtering and their surface morphologies were modified by wet-etching process in dilute acid solution to improve optical properties for application to silicon thin film solar cells as front electrode. The as-deposited films show a strong preferred orientation in [001] direction under our experimental conditions. A low resistivity below $5{\times}10^{-4}{\Omega}{\cdot}cm$ and high optical transmittance above 80% in a visible range are achieved in the films deposited at optimized conditions. After wet-etching, the surface morphologies of the films are changed dramatically depending on the deposition conditions, especially working pressure. The optical properties such as total/diffuse transmittance, haze and angular resolved distribution of light are varied significantly with the surface morphology feature, whereas the electrical properties are seldom changed. The cell performances of silicon thin film solar cells fabricated on the textured films are also evaluated in detail with comparison of commercial $SnO_2$:F films.

  • PDF

Synthesis and Characterization of Al-Doped Zinc Oxide Films by an Radio Frequency Magnetron Sputtering Method for Transparent Electrode Applications

  • Seo, Jae-Keun;Ko, Ki-Han;Cho, Hyung-Jun;Choi, Won-Seok;Park, Mun-Gi;Seo, Kyung-Han;Park, Young;Lim, Dong-Gun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2010
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on a glass substrate by an radio frequency (RF) magnetron sputtering method using a 150-nm-thick AZO target (Al: 2 wt.%) at room temperature. We investigated the effects of RF power between 100-350 W (in steps of 50 W) on the structural, electrical, and optical properties of the AZO films. The thickness and cross-sectional images of the films were observed by field emission scanning electron microscopy. The thicknesses of all films were kept constant at 150 nm and grown on a glass substrate. The grain sizes of the AZO films were determined with the X-ray diffraction by using the Scherrer' equation, and their electrical properties were investigated using a Hall effect electronic transport measurement system. The transmittance of the AZO films was also measured by an ultraviolet-visible spectrometer.

Oxidation Rates of TiAlLaN Thin Films Deposited by Ion Plating (이온플레이팅법으로 제조된 TiAlLaN계 박막의 산화속도)

  • Seo Sung Man;Lee Kee Sun;Lee Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • TiAl(La)N thin films were oxidized in vacuum of about 7 Pa to reduce the oxidation of WC-Co as a substrate. The oxidation rate constants of the thin films were quantified by an assumption of parabolic oxidation. Increasing AI content significantly decreased the parabolic oxidation rate constant. A simultaneous addition of AI and La was more effective to reduce the oxidation rate. The parabolic oxidation rate constant of $Ti_{0.66}$ $Al_{0.32}$ $La_{ 0.02}$N thin film at 1273 K showed about ten times lower than that of TiN. The addition of a small amount of La with Al induced the preferential formation of dense $\alpha$ $-Al_2$$O_3$ film in oxide film, leading to the abrupt reduction of oxidation rate.

Raman characteristics of polycrysta1line 3C-SiC thin films grown on AlN buffer layer (AlN 버퍼층위에 성장된 다결정 3C-SiC 박막의 라만 특성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.93-93
    • /
    • 2008
  • This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar + $H_2$).The Raman spectra of SiC films deposited on AlN layer of before and after annealings were investigated according to the growth temperature of 3C-SiC. Two strong Raman peaks, which mean that poly 3C-SiC admixed with nanoparticle graphite, were measured in them. The biaxial stress of poly 3C-SiC/AlN was calculated as 896 MPa from the Raman shifts of 3C-SiC deposited at $1180^{\circ}C$ on AlN of after annealing.

  • PDF

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

Preparation of ZnO:Al thin film on flexible substrate by process variable (공정변수에 의한 flexible 기판상의 ZnO:Al 박막의 제작)

  • Cho, Bum-Jin;Keum, Min-Jong;Son, In-Hwan;Choi, Dong-Jin;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.444-445
    • /
    • 2006
  • We prepared ZnO:Al thin films under various sputtering conditions by using facing targets sputtering (FTS) method. ZnO:Al thin films were deposited on polyethersulfon (PES) substrate which is the thickness of 200um at room temperature. the electrical, optical and crystallographic properties of ZnO:Al were investigated. From the results, prepared alll ZnO:Al thin films showed (002) diffraction peaks. ZnO:Al thin film with a resistivity of $8.4{\times}10^{-4}{\Omega}cm$ and a transmittance of over 80% in visible range was obtained.

  • PDF

Characteristics of Al Films Prepared by Oblique Angle Deposition (빗각 증착으로 제조한 Al 박막의 특성)

  • Park, Hye-Sun;Yang, Ji-Hoon;Jung, Jae-Hun;Song, Min-A;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.111-116
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition method which utilizes non-normal angles between the substrate and the vaporizing source. It has been known that tilting the substrate changes the properties of the film deposited on it, which was thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer Al films by magnetron sputtering. The magnetron sputtering source of 4 inch diameter was used to deposit the films. Al films have been deposited on Si wafers and cold-rolled steel sheets. The multilayer films were prepared by changing the tilting angle upside down at each layer interval, which means that when the first layer was deposited at an angle of $+45^{\circ}$, the second layer was deposited at an angle of $-45^{\circ}$, and vice versa. The microstructure, surface roughness and reflectance of the films were investigated using a scanning electron microscope, a surface profiler and a spectrophotometer, respectively. The corrosion resistance was measured and compared using the salt spray test. The single layer film prepared at an oblique angle of $60^{\circ}$ prepared at other angles. However, for the multilayer films, the film prepared at an oblique angle of $45^{\circ}$ showed the most compact and featureless structure. The multilayer films were found to exhibit higher corrosion resistance than the single layer films.

Effect of a 3C-SiC buffer layer on SAW properties of AlN films (3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

Evolution of grains to relieve additional compressive stress developed in Al-Mg alloy films during thermal annealing (Al-Mg 합금 박막의 압축응력 완화를 위한 어닐링 공정상의 입자 발달)

  • Lee, Jun-Seong;Yang, Ji-Hun;Jeong, Jae-In;Jeong, Yong-Hwa;Gwak, Yeong-Jin;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.47-51
    • /
    • 2014
  • In this work, a possible mechanism for grain evolution in Al-Mg alloy films during thermal annealing is suggested on the basis of the phase transition and the related residual stress. Al-Mg alloy films with compositions of 14.0 and 18.0 wt% Mg content were deposited on cold-rolled steel substrates by the direct current co-sputtering method using Al and Mg targets. After the deposition, the samples were thermally annealed at $400^{\circ}C$ for 10 min. The featureless, dense cross-sectional microstructure of the as-deposited films turned into a grainy microstructure after the thermal annealing. According to the residual stress evaluated by using the $XRD-sin2{\psi}$ technique and the phase analysis by XRD, it is likely that grains were created in order to relieve the additional accumulation of residual stress originating from the phase transition from face-centered cubic Al (${\alpha}$) to Al3Mg2 (${\beta}$) and Mg (${\delta}$) phases, suggesting interplay between the microstructure and residual stress.

  • PDF

The Characteristics of Al Thin Films on Ar Plasma Surface Treatment (Al 박막의 Ar 플라즈마 표면처리에 따른 특성)

  • Park, Sung-Hyun;Ji, Seung-Han;Jeon, Seok-Hwan;Chu, Soon-Nam;Lee, Sang-Hoon;Lee, Neung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1333-1334
    • /
    • 2007
  • Al thin film was the most popular electrode in semiconductor and flat panel display world, because of its electrical conductivity, selectivity and easy to apply to thin film. However, Al thin films were not good to use on the bottom electrode about the crystalline growth of inorganic compound materials such as ZnO, AlN and GaN, because of its surface roughness and melting points. In this paper, we investigated Ar plasma surface treatment of Al thin film to enhance the surface roughness and electrical conductivity using the reactive ion etching system. Several process conditions such as RF power, working pressure and process time were controlled. In results, the surface roughness showed $15.53\;{\AA}$ when RF power was 100 W, working pressure was 50 mTorr and process time was 10 min. Also, we tried to deposit ZnO thin films on the each Al thin films, the upper conditions showed the best crystalline characteristics by x-ray diffraction.

  • PDF