• Title/Summary/Keyword: Al 편석

Search Result 29, Processing Time 0.022 seconds

Wear properties of Al-Pb bearing alloys produced by impeller mixing (강제교반법으로 제조된 Al-Pb계 베어링합금의 마모거동)

  • 임화영;임대순;허무영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.11a
    • /
    • pp.34-37
    • /
    • 1991
  • Al계 베어링합금은 소착저항력등의 베어링특성이 우수하여 최근에 자동차의 엔진부품에 많이 사용되고 있다. Al계 베어링합금으로는 Al-Sn계, Al-Pb계, Al-Si계 합금이 개발되어 사용되어 왔다. Al-Si계 합금은 높은 강도, 우수한 부식성, 주조성이 향상되는 장점등을 갖고 있다. 또한 Al-Pb계 합금은 Pb가 고체윤활제로 작용하여 소착저항성이 높으며 가격도 저렴한 장점을 갖고 있다. Al과 Pb는 용융상태에서 넓은 용융간극을 갖어 중력편석을 일으키기 때문에 일반적인 주조방법으로 Al계 베어링합금을 제조할 수없다. 또한 Al에 Si이 첨가됨에 따라 높은 경도등의 기계적성질의 향상이 얻어지지만 Al 기지에 Si의 함량이 증가할 수록 편석이 심해져 조대한 Si-rich상이 미세조직에 존재하여 합금이 취약해지는 단점을 갖고 있다. 따라서 본 연구에서는 Al 기지에 Pb의 중력편석을 최소화하고 Al 기지에 조대한 Si-rich상이 생성되는 것을 막기 위하여 Al과 Pb가 공존하는 온도구역에서 높은 교반속도로 용탕을 강제교반하여 액상에서 Pb와 Si을 미세하게 분산시킨 후 수냉되는 동주형에서 급속응고시켜 Pb와 Si-rich 상이 균일하게 분포된 Al계 베어링합금을 제조하였다. 본 연구에서는 Pb의 양을 0%에서 35%까지 변화시켰으며, Si의 양을 0%에서 20%까지 변화시켜서 베어링합금을 제조하였으며, 강제교반속도는 500rpm에서 2500rpm 까지 변화시켜 베어링합금을 제조하였다.

  • PDF

Effects of Natural Convection on Macrosegregation of Directionally Solidified Off-Eutectic Composites (공정복합재료의 일방향응고시 용질편석에 미치는 자연대류의 영향)

  • Kim, Gi-Bae;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.123-131
    • /
    • 1995
  • Natural convection in bridgman growth and it's effect on macrosegregation in unidirectionally solidified off-eutectic alloys were examined in this study. AlCu off-eutectic alloys(27.5wt% ~35. 6wt% ) were solidified upward or downward for producing a different natural convection and then Cu concentrations of off-eutectic composites were measured as a function of solidified fraction. Solutal and temperature distributions ahead of the solid/liquid interface were measured on quenched specimen. When hypo-utectic AlCu alloys are directionally solidified with downward growth, considerable macrosegregation occurs due to flow induced by thermal and solutal convection in melt. Soultal convection affects the macrosegregation of hyper-eutectic AlCu alloys more severely than thermal convection. Solute composition at solid/liquid interface of offkutectic composites was eutectic and also temperature was near eutectic point without large undercooling.

  • PDF

The Effect of Internal Chills on the Solidified Structure and Chemical Segregation (응고조직 및 성분편석에 미치는 내부냉금의 효과)

  • Kim, Myeong-Han;Jo, Hyeon-Nam;Kim, Jeong-Gyeom;Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.883-889
    • /
    • 1999
  • The pure Al or-(1,2,3wt%)Cu alloy internal chill with 4,6,8,12 and 15mm ø, respectively, was inserted at the center of a graphite mold with the size of 95mm ø$\times$200mm H. The molten metal with the same composition as the internal chill was poured into the mold at the pouring temperature of $750^{\circ}C$ and the cooling rates, solidified structures and chemical segregation were analyzed. The results represented that there was remarkable increased in cooling rate as well as decrease in grain size, secondary dendrite arm spacing and chemical segregation as the ratio of ingot to internal chill diameter was increased to 8. However there was a considerable drop of the internal chill effect when this ratio exceeded 8, resulting from incomplete melting of internal chills. The optimum ratio for the maximum internal chill effect of pure Al and-(1,2,3wt%)Cu allolys was 8 at the given pouring temperature.

  • PDF

Solidification Process of an Al-Cu Alloy in a Vertical Annular Mold and Effects of Cooling Rate on Macrosegregation (수직환상주형내 Al-Cu합금의 응고과정 및 냉각속도의 조대편석에 대한 영향)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1818-1832
    • /
    • 1994
  • Transport process during solidification of an AI-CU alloy in a vertical annular mold of which inner wall is cooled is numerically simulated. A model which can take account of local density dependence on the solute concentration is established and incorperated in the analysis. Results show that thermally and solutally induced convections are developed in sequence, so that there is little interaction between them. Thermal convection effectively removes the initial superheat from the melt and vanishes as solidification proceeds from the cooling wall. On the other hand, solutal convection which is developed later over the meshy and the pure liquid regions leads to large-scale redistribution of the consituents. The degree of the initial superheating hardly affects overall solidification behavior except the early stage of the process, when the cooling rate is kept constant. Macrosegregation is reduced remarkably with increasing cooling rate, because not only the liquidus interface advances so quickly that time available for the solute transport is not enough, but also the interdendritic flow is strongly damped by rapid crystal growth within the mushy region.

The effect of gap between ingot and crucible on the distribution of initial melt concentration in Bridgman crystal growth (Bridgman 결정성장시 장입 주괴와 도가니 사이의 틈이 용액이 초기농도에 미치는 영향)

  • Seung-Mo Chung;Man-Sug Kang;Zin-Hyoung Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.169-177
    • /
    • 1994
  • Dilute Al-Cu and Al-Mg alloys were solidified unidirectionally upward by Bridgman method. It is necessary that solute concentration of initial melt is uniform to be able to control the concentration of crystal. When solute concentration is not uniform, it can cause unusual macro-segregation in grown solid. A non-steady state solidification was observed where the solute concentration in the grown solid decreased with the progress of solidification, when a dilute Al-Cu melt with positive axial temeprature gradient was solidified. This was caused by leaking out of Cu-rich melt into the gap between ingot and crucible during melt-down and its sedimentation after complete melting. In the case of Al-Mg alloy, the solute concentration has a minimum in the middle of grown specimen because Mg-rich melt flowed down the gap between ingot and crucible and floated after complete melting. Uniform initial melt concentration can be achieved by the homogenization of the ingot or by the absence of the gap between ingot and crucible.

  • PDF

Plastic Behavior of $\textrm{L1}_{2}\textrm{Ni}$-20Al-10Fe Intermetallic Compounds with Microalloying Additions of B, Hf and Zr (B, Hf, Zr첨가에 따른 $\textrm{L1}_{2}\textrm{Ni}$-20Al-10Fe 금속간화합물의 소성거동)

  • Kim, Min-Cheol;Hwang, Seung;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.592-596
    • /
    • 1997
  • LI$_{2}$형 결정구조를 갖는 Ni-20at.%AI-10at%Fe 금속간화합물에 boron, zirconium 과 hafnium을 최고 0.5at.% 까지 첨가하여 항복강도, 연성, 파괴 등 기계적 성질의 변화를 인장시험과 X선분석 및 XPS분석 등을 통하여 관찰하였다. Ni-20at.% AI-10at.% Fe금속간화합물에 boron을 첨가하였을 때는 연신율의 현저한 증가가 나타났으나 zirconium이나 hafnium첨가의 경우에는 별다른 효과가 나타나지 않았다. Ni-20at.%AI-10at%Fe 금속간화합물의 경우, boron의 양이 증가할수록 인장연신율이 증가하였으며 0.1at.%의 boron을 첨가한 경우 최고 48.5%의 상온인장연신율을 나타내었다. 첨가물을 넣지 않은 경우와 zirconium과 hafnium을 첨가한 경우, 파괴모드는 입계파괴의 형태를 나타내었으나 boron을 첨가한 경우에는 파괴모드가 입계파괴에서 입내파괴로 변화되었다. XPS분석을 통하여 boron이 입계에 편석된 것을 관찰할 수 있었으며 이는 이미 제시된 여러가지 해석들과 일치하는 결과이다. 이로부터 boron의 첨가에 따른 인장연신율의 증가는 boron의 입계편석거동과 관련이 있음을 알 수 있다.

  • PDF

Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites (Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향)

  • Kim, Jong-Chan;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

Segregation of Squeeze Cast Al-7% Si-0.3% Mg Alloy Bars (용탕단조한 Al-7%Si-0.3% Mg합금 봉상시료의 편석거동)

  • Kim, Ki-Young;Ki, Seok-Do;Park, Jong-Rak
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • Squeeze casting has advantages to improve mechanical properties of nonferrous castings without losing high productivity. Sound pore free structure makes it possible to be subjected to heat treatment and welding. This process became popular to produce lighter automobile parts alternating cast iron parts. It has, however, two disadvantages of segregation and scattered structure due to the solidified layers in sleeve. In this study segregation behavior of squeeze cast Al-7%Si-0.3%Mg alloy bars was investigated using HVSC machine under various injection conditions. Degree of segregation decreased with injection pressure and effect of injection velocity on it was small. Segregation mode of solute was strongly governed by solidification mode and flow pattern.

  • PDF

Quantitative analysis of impurity concentration in purification of Al by segregation method (편석법에 의한 Al정련시 불순물농도의 정량적계산에 관한 연구)

  • Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.507-513
    • /
    • 1995
  • The effect of forced convention on the solute redistribution of the Al ingot was studied quantitatively in an effort to fabricate high purity aluminum using a segregation method. Based on the experimental results, the solute concentration in the solid phase tended to decrease at the early state of solidification, and then increased gradually as solidification proceeded. Fe and Si concentrations decreased as growth rate decreased and as revolution speed increased. The solute redistribution obtained from the BPS model incorporated with the tangential flow component as well as the axial flow component within the melt, agreed well with the measurements.

  • PDF