• Title/Summary/Keyword: Akt Signaling Pathway

Search Result 345, Processing Time 0.031 seconds

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 Replication through AKT Signal Modulation (아마인 추출물의 AKT 신호 조절을 통한 콕사키바이러스 증식억제)

  • Shin, Ha-Hyeon;Moon, Sung-Jin;Lim, Byung-Kwan;Kim, Jin Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.291-297
    • /
    • 2018
  • Coxsackievirus B3 (CVB3) is a very well-known causative agent for viral myocarditis and meningitis in human. However, the effective vaccine and therapeutic drug are not developed yet. CVB3 infection activates host cell AKT signaling. Inhibition of AKT signaling pathway may attenuate CVB3 replication and prevent CVB3-mediate viral myocarditis. In this study, we determined antiviral effect of the selected natural plant extract to develop a therapeutic drug for CVB3 treatment. We screened several chemically extracted natural compounds by using HeLa cell-based cell survival assay. Among them, Linum usitatissimum L. extract was selected for antiviral drug candidate. L. usitatissimum extract significantly decreased CVB3 replication and cell death in CVB3 infected HeLa cells with no cytotoxicity. CVB3 protease 2A induced eIF4G1 cleavage and viral capsid protein VP1 production were dramatically decreased by L. usitatissimum extract treatment. In addition, virus positive and negative strand genome amplification were significantly decreased by 1 mg/ml L. usitatissimum extract treatment. Especially, L. usitatissimum extract was associated with inhibition of AKT signal and maintain mTOR activity. In contrast, Atg12 and LC3 expression were not changed by L. usitatissimum extract treatment. In this study, the potential AKT signal inhibitor, L. usitatissimum extract, was significantly inhibited viral genome replication and protein production by inhibition of AKT signal. These results suggested that L. usitatissimum extract is a novel therapeutic agent for treatment of CVB3-mediated diseases.

Proliferative Activity of Polyporus umbellatus Extract from Mushrooms via the PI3K/Akt and Wnt/β-catenine signaling in HHDPCs (사람 모유두세포에서 PI3K/Akt와 Wnt/β-catenine 신호전달을 경유한 저령추출물의 세포증식 효과)

  • Lea-Minju Kang;Suk-Jong Kang;Yeun-Ja Mun
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • Objectives : Polyporus umbellatus is a medicinal mushroom that has been used for over thousands years in Chinese medicine as a powerful diuretic to relieve fluid retention and edema. Dermal papilla is located at the bottom of the hair follicle and connected to the blood vessels where it gets the nutrients and oxygen to nurture hair follicle. This study examined the mechanism through which the ethanol extract of Polyporus umbellatus (EPU) promoted the proliferation of human dermal papilla cells (HHDPCs). Methods : To estimate the proliferative effects of EPU on HHDPCs, cell viability was estimated by thiazolyl blue tetrazolium bromide (MTT) assay. Western blotting was used to investgate the activation of ERK, phosphoinositide 3-kinase (PI3K)/Akt, β-catenin, GSK-3β and heme oxygenase-1 (HO-1). Cells were treated with inhibitors of ERK and Akt prior to EPU treatment. Results : EPU promoted the proliferation of HHDPCs and the phosphorylation of ERK and Akt in dose dependent manner. However, the proliferative effect of EPU on HHDPCs was inhibited by pre-treatment of ERK inhibitor (PD98059) and Akt inhibitor (LY294002). Furthermore, EPU respectively stimulated the protein expression of β-catenin and phosphorylated GSK-3β. EPU significantly increased the protein expression levels of proliferation and cytoprotection related genes such as Bcl-2, SIRT-1, and HO-1 in cells. Conclusion : This results suggest that EPU promoted the proliferation of HHDPCs via activating PI3K/Akt and Wnt/β-catenin signaling pathway in HHDPCs.

Suppression of Akt-HIF-1α signaling axis by diacetyl atractylodiol inhibits hypoxia-induced angiogenesis

  • Choi, Sik-Won;Lee, Kwang-Sik;Lee, Jin Hwan;Kang, Hyeon Jung;Lee, Mi Ja;Kim, Hyun Young;Park, Kie-In;Kim, Sun-Lim;Shin, Hye Kyoung;Seo, Woo Duck
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.508-513
    • /
    • 2016
  • Hypoxia-inducible factor (HIF)-1α is a key regulator associated with tumorigenesis, angiogenesis, and metastasis. HIF-1α regulation under hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. Here, we demonstrate that diacetyl atractylodiol (DAA) from Atractylodes japonica (A. japonica) is a potent HIF-1α inhibitor that inhibits the Akt signaling pathway. DAA dose-dependently inhibited hypoxia-induced HIF-1α and downregulated Akt signaling without affecting the stability of HIF-1α protein. Furthermore, DAA prevented hypoxia-mediated angiogenesis based on in vitro tube formation and in vivo chorioallantoic membrane (CAM) assays. Therefore, DAA might be useful for treatment of hypoxia-related tumorigenesis, including angiogenesis.

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways

  • Sun-Young Hwang;Kwanhwan Wi;Goo Yoon;Cheol-Jung Lee;Soong-In Lee;Jong-gil Jung;Hyun-Woo Jeong;Jeong-Sang Kim;Chan-Heon Choi;Chang-Su Na;Jung-Hyun Shim;Mee-Hyun Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.682-691
    • /
    • 2023
  • Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

Immune-Enhancing Effect and Anti-Obesity Activit of Kadsura japonica Fruits

  • Jin Hee Woo;Na Rae Shin;Ju-Hyeong Yu;So Jeong Park;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.87-87
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement and anti-obesity is increasing. Thus, in this study, we investigated whether Kadsura japonica fruits (KJF) exhibits immunostimulatory activity and anti-obesity activity. KJF increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked KJF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK and PI3K/AKT signaling pathway reduced KJF-mediated production of immunostimulatory factors, and the activation of MAPK and PI3K/AKT signaling pathway by KJF suppressed the inhibition of TLR2/4. KJF attenuated the lipid accumulation and the protein expression such as CEBPα, PPARγ, perilipin-1, adiponectin, and FABP4 related to the lipid accumulation in 3T3-L1 cells. In addition, KJF inhibited excessive proliferation of 3T3-L1 cells and protein expressions such as β-catenin and cyclin D1 related to cell growth. These findings indicate that KJF may have immunostimulatory activity and anti-obesity activity.

  • PDF

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease

  • Lee, Da Woon;Ryu, Young-Kyoung;Chang, Dong-Ho;Park, Hye-Yeon;Go, Jun;Maeng, So-Young;Hwang, Dae Youn;Kim, Byoung-Chan;Lee, Chul-Ho;Kim, Kyoung-Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1168-1177
    • /
    • 2022
  • Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.