Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 Replication through AKT Signal Modulation

아마인 추출물의 AKT 신호 조절을 통한 콕사키바이러스 증식억제

  • Shin, Ha-Hyeon (Department of Biomedical Science, Jungwon University) ;
  • Moon, Sung-Jin (Department of Biomedical Science, Jungwon University) ;
  • Lim, Byung-Kwan (Department of Biomedical Science, Jungwon University) ;
  • Kim, Jin Hee (College of Herbal Bio-industry, Daegu Haany University)
  • 신하현 (중원대학교 의생명과학과) ;
  • 문성진 (중원대학교 의생명과학과) ;
  • 임병관 (중원대학교 의생명과학과) ;
  • 김진희 (대구한의대학교 한방산업대학)
  • Received : 2018.08.24
  • Accepted : 2018.10.31
  • Published : 2018.12.31

Abstract

Coxsackievirus B3 (CVB3) is a very well-known causative agent for viral myocarditis and meningitis in human. However, the effective vaccine and therapeutic drug are not developed yet. CVB3 infection activates host cell AKT signaling. Inhibition of AKT signaling pathway may attenuate CVB3 replication and prevent CVB3-mediate viral myocarditis. In this study, we determined antiviral effect of the selected natural plant extract to develop a therapeutic drug for CVB3 treatment. We screened several chemically extracted natural compounds by using HeLa cell-based cell survival assay. Among them, Linum usitatissimum L. extract was selected for antiviral drug candidate. L. usitatissimum extract significantly decreased CVB3 replication and cell death in CVB3 infected HeLa cells with no cytotoxicity. CVB3 protease 2A induced eIF4G1 cleavage and viral capsid protein VP1 production were dramatically decreased by L. usitatissimum extract treatment. In addition, virus positive and negative strand genome amplification were significantly decreased by 1 mg/ml L. usitatissimum extract treatment. Especially, L. usitatissimum extract was associated with inhibition of AKT signal and maintain mTOR activity. In contrast, Atg12 and LC3 expression were not changed by L. usitatissimum extract treatment. In this study, the potential AKT signal inhibitor, L. usitatissimum extract, was significantly inhibited viral genome replication and protein production by inhibition of AKT signal. These results suggested that L. usitatissimum extract is a novel therapeutic agent for treatment of CVB3-mediated diseases.

Keywords

References

  1. Feldman, A. M. and McNamara, D. (2000) Myocarditis. N. Engl. J. Med. 343: 1388-1398. https://doi.org/10.1056/NEJM200011093431908
  2. Lim, B. K., Xiong, D., Dorner, A., Youn, T. J., Yung, A., Liu, T. I., Gu, Y., Dalton, N. D., Wright, A. T., Evans, S. M., Chen, J., Peterson, K. L., McCulloch, A. D., Yajima, T. and Knowlton, K. U. (2008) Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J. Clin. Invest. 118: 2758-2770. https://doi.org/10.1172/JCI34777
  3. Lee, Y. G., Park, J. H., Jeon, E. S., Kim, J. H. and Lim, B. K. (2016) Fructus amomi cardamomi extract inhibit coxsackievirus-B3 induced myocarditis in murine myocarditis model. J. Microbiol. Biotechnol. 26: 2012-2018. https://doi.org/10.4014/jmb.1605.05056
  4. Herskowitz, A., Beisel, K. W., Wolfgram, L. J. and Rose, N. R. (1985) Coxsackievirus B3 murine myocarditis: wide pathologic spectrum in genetically defined inbred strains. Hum. Pathol. 16: 671-673. https://doi.org/10.1016/S0046-8177(85)80149-0
  5. Baboonian, C., Davies, M. J., Booth, J. C. and McKenna, W. J. (1997) Coxsackie B viruses and human heart disease. Curr. Top. Microbiol. Immunol. 223: 31-52.
  6. Liu, P., Martino, T., Opavsky, M. A. and Penninger, J. (1996) Viral myocarditis: balance between viral infection and immune response. Can. J. Cardiol. 12: 935-943.
  7. Martino, T. A., Liu, P. and Sole, M. J. (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ. Res. 74: 182-188. https://doi.org/10.1161/01.RES.74.2.182
  8. Kim, J. M., Lim, B. K., Ho, S. H., Yun, S. H., Shin, J. O., Park, E. M., Kim, D. K., Kim, S. and Jeon, E. S. (2006) TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis. Biochem. Biophys. Res. Commun. 344: 765-771. https://doi.org/10.1016/j.bbrc.2006.03.170
  9. Yun, S. H., Lee, W. G., Kim, Y. C., Ju, E. S., Lim, B. K., Choi, J. O., Kim, D. K. and Jeon, E. S. (2012) Antiviral activity of coxsackievirus B3 3C protease inhibitor in experimental murine myocarditis. J. Infect. Dis. 205: 491-497. https://doi.org/10.1093/infdis/jir745
  10. Chen, T. C., Weng, K. F., Chang, S. C., Lin, J. Y., Huang, P. N. and Shih, S. R. (2008) Development of antiviral agents for enteroviruses. J. Antimicrob. Chemother. 62: 1169-1173. https://doi.org/10.1093/jac/dkn424
  11. Schuman, B. E., Squires, E. J. and Leeson, S. (2000) Effect of dietary flaxseed, flax oil and n-3 fatty acid supplement on hepatic and plasma characteristics relevant to fatty liver haemorrhagic syndrome in laying hens. Br. Poult. Sci. 41: 465-472. https://doi.org/10.1080/713654970
  12. Yi, H., Hwang, K. T., Regenstein, J. M. and Shin, S. W. (2014) Fatty Acid Composition and Sensory Characteristics of Eggs Obtained from Hens Fed Flaxseed Oil, Dried Whitebait and/or Fructo-oligosaccharide. Asian-Australas. J. Anim. Sci. 27: 1026-1034. https://doi.org/10.5713/ajas.2013.13775
  13. DeLuca, J. A. A., Garcia-Villatoro, E. L. and Allred, C. D. (2018) Flaxseed bioactive compounds and colorectal cancer prevention. Curr. Oncol. Rep. 20: 59. https://doi.org/10.1007/s11912-018-0704-z
  14. Troina, A. A., Figueiredo, M. S., Passos, M. C., Reis, A. M., Oliveira, E., Lisboa, P. C. and Moura, E. G. (2012) Flaxseed bioactive compounds change milk, hormonal and biochemical parameters of dams and offspring during lactation. Food. Chem. Toxicol. 50: 2388-2396. https://doi.org/10.1016/j.fct.2012.04.040
  15. Caligiuri, S. P., Edel, A. L., Aliani, M. and Pierce, G. N. (2014) Flaxseed for hypertension: implications for blood pressure regulation. Curr. Hypertens. Rep. 16: 499. https://doi.org/10.1007/s11906-014-0499-8
  16. Esfandiarei, M., Luo, H., Yanagawa, B., Suarez, A., Dabiri, D., Zhang, J. and McManus, B. M. (2004) Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J. Virol. 78: 4289-4298. https://doi.org/10.1128/JVI.78.8.4289-4298.2004
  17. Tan, E. L., Wong, A. P. and Poh, C. L. (2010) Development of potential antiviral strategy against coxsackievirus B4. Virus. Res. 150: 85-92. https://doi.org/10.1016/j.virusres.2010.02.017
  18. Lim, B. K. and Kim, J. H. (2014) ORI2 inhibits coxsackievirus replication and myocardial inflammation in experimental murine myocarditis. Biol. Pharm. Bull. 37: 1650-1654. https://doi.org/10.1248/bpb.b14-00408
  19. Lim, B. K., Choi, J. H., Nam, J. H., Gil, C. O., Shin, J. O., Yun, S. H., Kim, D. K. and Jeon, E. S. (2006) Virus receptor trap neutralizes coxsackievirus in experimental murine viral myocarditis. Cardiovasc. Res. 71: 517-526. https://doi.org/10.1016/j.cardiores.2006.05.016
  20. Lim, B. K., Yun, S. H., Ju, E. S., Kim, B. K., Lee, Y. J., Yoo, D. K., Kim, Y. C. and Jeon, E. S. (2015) Soluble coxsackievirus B3 3C protease inhibitor prevents cardiomyopathy in an experimental chronic myocarditis murine model. Virus. Res. 199: 1-8. https://doi.org/10.1016/j.virusres.2014.11.030
  21. Lee, S. M., Lee, Y. J., Yoon, J. J., Kang, D. G. and Lee, H. S. (2014) Effect of Poria cocos on puromycin aminonucleoside-induced nephrotic syndrome in rats. Evid. Based. Complement. Alternat. Med. 2014: 570420.
  22. Badorff, C., Berkely, N., Mehrotra, S., Talhouk, J. W., Rhoads, R. E. and Knowlton, K. U. (2000) Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin-based substrate analogue. J. Biol. Chem. 275: 11191-11197. https://doi.org/10.1074/jbc.275.15.11191
  23. Huber, S. A. and Lodge, P. A. (1986) Coxsackievirus B-3 myocarditis. Identification of different pathogenic mechanisms in DBA/2 and Balb/c mice. Am. J. Pathol. 122: 284-291.
  24. Han, J. Y., Jeong, H. I., Park, C. W., Yoon, J., Ko, J., Nam, S. J. and Lim, B. K. (2018) Cholic acid attenuates ER stress-induced cell death in coxsackievirus-B3 infection. J. Microbiol. Biotechnol. 28: 109-114. https://doi.org/10.4014/jmb.1708.08009