• 제목/요약/키워드: Airfoil Flow

Search Result 406, Processing Time 0.021 seconds

NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD (가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

Thermal Stress Intensity Factors for Traction Free Cusp Cracks (트랙션이 없는 커스프 균열의 열응력세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.286-294
    • /
    • 1988
  • The thermal stress intensity factors (TSIF's) for the cusp cracks such as hypocycloid crack, symmetric airfoil crack and symmetric lip crack are determined by using Bogdanoff's complex variable approaches in plane thermoplasticity. The results are expressed in terms of the periodic functions of the direction of uniform heat flow. The TSIF's are shown to be sensitive to both the direction of uniform heat flow and be thermal boundary conditions. It is also shown that Fourence's solutions for an insulated circular hole and Sih's solutions for an insulated Griffith crack are derived from the results of the stress and displacement fields for the hypocycloid crack and the TSIF's for the various cusp cracks, respectively.

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.

Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil (고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성)

  • Yoo, Jae-Kyeong;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

A study for the pressure distribution and the boundary layer around a circular cylinder in a shear flow (Shear Flow 속에 있는 Circular Cylinder 표면의 압력분포 및 경계층 연구)

  • 이상섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.753-758
    • /
    • 2003
  • In this study. an experiment has been performed to investigate distributions of static pressure around a circular cylinder in a uniform shear flow which is made by a specially designed wind tunnel. From the computation program(BLAYER), various boundary layer value are obtained depending on the shear flow rate. It is basical design data that boundary layer flow phenomenon of nuclear power plant heat exchanger tube surroundings. airfoil. and others flow fields.

Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan (축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용)

  • Chung, Dong-Gyu;Hong, Soon-Seong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

A Computerized Axial Flow Fan Design System for Noise and Performance Analysis (성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제)

  • Chung, Dong-Kyu;Noh, Jun-Gu;Seo, Jae-Young;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A Study on 2-D Airfoil Design Optimization by Kriging (Kriging 방법을 이용한 2차원 날개 형상 최적설계에 대한 연구)

  • Ka Jae Do;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • Recently with growth in the capability of super computers and Parallel computers, shape design optimization is becoming easible for real problems. Also, Computational Fluid Dynamics(CFD) techniques have been improved for higher reliability and higher accuracy. In the shape design optimization, analysis solvers and optimization schemes are essential. In this work, the Roe's 2nd-order Upwind TVD scheme and DADI time march with multigrid were used for the flow solution with the Euler equation and FDM(Finite Differenciation Method), GA(Genetic Algorithm) and Kriging were used for the design optimization. Kriging were applied to 2-D airfoil design optimization and compared with FDM and GA's results. When Kriging is applied to the nonlinear problems, satisfactory results were obtained. From the result design optimization by Kriging method appeared as good as other methods.