• Title/Summary/Keyword: Aircraft Sizing

Search Result 32, Processing Time 0.018 seconds

Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system (전기로 추진되는 일반 프로펠러 항공기의 초기 사이징)

  • Han, Hye-Sun;Shin, Kyo-Sic;Park, Hong-Ju;Hwang, Ho-Yon;Nam, Taewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.391-403
    • /
    • 2013
  • Propeller aircraft propelled by an electric propulsion system is gaining a renewed interest because of ever-increasing environmental concern on harmful emissions emitted from conventional jet engines and national energy security. Traditional aircraft sizing methods are not readily applicable to electric propulsion aircraft that utilize a variety of alternative energy sources and power generation systems. This study showcases an electric propulsion aircraft sizing exercise based on a generalized, power based sizing method. A general aviation aircraft is propelled by an electric propulsion system that comprises of a propeller, a high temperature super conducting motor, a Proton Exchange Membrance(PEM) fuel cell system fuelled with hydrogen, and power conditioning equipment. In order to assess the impact of technology progression, aircraft sizing was conducted for two different sets of technology assumptions for electric components, and the results were compared with conventional baseline aircraft.

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

Advanced Design Synthesis Process for Rapid Aircraft Development (신속한 항공기 개발을 위한 통합 개념설계 프로세스에 대한 연구)

  • Park, Seung Bin;Park, Jin Hwan;Jeon, Kwon-Su;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Integrated aircraft synthesis process for rapid analysis and design is described in this paper. Data flow between different analysis fields is described in details. All the data are divided into several groups according to importance and source of the data. Analysis of design requirements and certification regulations is carried out to determine baseline configuration of an aircraft. Overall design process can be divided into initial sizing, conceptual and preliminary design phases. Basic data for conceptual design are obtained from initial sizing, CAD and geometry analysis. Basic data are required input for weight, aerodynamics and propulsion analyses. Results of this analysis are used for stability and control, performance, mission, and load analysis. Feasibility of design is verified based on analysis results of each discipline. Design optimization that involves integrated process for aircraft analysis is performed to determine optimum configuration of an aircraft on a conceptual design stage. The process presented in this paper was verified to be used for light aircraft design.

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

Aircraft Sizing Methods for the Design of an Electrically Propelled Aircraft (전기추진 항공기 설계를 위한 사이징 방법 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.590-600
    • /
    • 2012
  • In this research, generalized sizing methods were studied that can be applied to an aircraft which uses solar cell or fuel cell as energy sources. To consider multiple propulsion systems and energy resources, multiple power paths were modeled and the weight of consumable and non-consumable energy was reflected in the weight change calculation for each mission segments. In the constraint analysis, power to weight ratio was selected instead of thrust to weight ratio and used in the sizing process of balancing power and energy.

Tail Sizing of 95-Seat Type Turboprop Aircraft (95인승급 터보프롭 중형항공기 꼬리날개 사이징)

  • Lee, Jangho;Kang, Youngsin;Bae, Hyogil;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 1 - Combustor Sizing (항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 1 - 연소기 크기 결정)

  • Kim, Daesik;Ryu, Gyong Won;Hwang, Ki Young;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.54-60
    • /
    • 2013
  • This paper shows a general development process for aircraft gas turbine combustors. As a first step for developing the preliminary combustor design program, several combustor sizing methodologies using reference area concepts are reviewed. There are three ways to determine the reference area; 1) combustion efficiency approach, 2) pressure loss approach, 3) velocity assumption approach. The current study shows the comparisons of the calculated results of combustor reference values from the pressure loss and velocity assumption approaches. Further works are required to add iterative steps in the program using more reasonable values of pressure loss and velocities, and to evaluate the sizing results using data for actual combustor performance and sizes.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

User Friendly Interactive Aircraft Sizing Environment Development (사용자 친화적 인터액티브 항공기 사이징 환경 개발)

  • Seo, Seung-Pyo;Maw, Aye Aye;Jeon, Gwon-Su;Lee, Jae-U
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.1-4
    • /
    • 2016
  • 항공기 사이징은 항공기 설계에서 설계 및 임무 요구조건을 만족하기 위한 항공기의 무게를 계산하는 과정이다. 사이징 프로그램은 엔지니어가 기본적인 파라미터만 입력하면 내장된 코드에 의하여 자동적으로 사이징 과정을 수행하여 주는 프로그램을 말한다. 본 연구에서는 개발된 프로그램의 프로세스, 프로그램 구성을 설명하고 실행 예를 통하여 사용자가 편리하고 직관적으로 활용할 수 있는 사이징 프로그램을 개발하였다. 개발 된 프로그램은 사이징 과정에서 편리한 임무작성, 입력된 임무에 따른 임무형상 도시, 그리고 사이징 및 임무해석결과를 한눈에 확인할 수 있는 것이 특징이다.

  • PDF

Structural Sizing for Optionally Piloted PAV Preliminary Design (유무인 겸용 개인항공기(OPPAV) 개념설계를 위한 구조물 사이징)

  • Kim, Sung Joon;Lee, Seung-gyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Personal air vehicle (PAV) is considered by aviation engineers as a solution to provide fast urban mobility. The purpose of designing a optionally piloted PAV (OPPAV) is to provide an individual air vehicle. The airframe structure is designed with high strength carbon fiber composite to reduce the aircraft weight. This paper presents an overview of sizing process for OPPAV at the conceptual design level. It consists of load analysis, structural sizing and development of efficient design allowable values for composite material. The weight is estimated based on sizing process, including strength and stiffness requirements. The objective of this study is to present a overview of structural sizing procedure and fast tool for preliminary design phases.