• Title/Summary/Keyword: Airborne image

Search Result 170, Processing Time 0.025 seconds

Building Boundary Extraction of Airborne LIDAR data by Image-Based and Point-Based Data Analysis (영상 및 점기반 자료처리에 의한 항공 라이다 자료의 건물경계추출)

  • Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • LIDAR data, as the source of the 3D information of buildings, are used many modeling fields such as three-dimensional city models in urban planning and the visibility analysis of buildings. This study suggests a methodology, that is characterized by combining image-based and point-based process, for minimizing the user's intervention and automatically extracting building boundary only using the LIDAR data. Image processing methodology is firstly used to separate building and non-building regions from LIDAR data. Moreover, building regions are then classified main roof into remaining parts by the statistical analysis of height values, and the remaining parts are processed separately. Through the experimental results of study areas which exist many types of buildings, for example, apartment-type, stair-type, complex-type, etc. Approximately 90% building boundaries are automatically extracted by the proposed methodology.

  • PDF

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method (시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석)

  • Lee, Tae Yun;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.

Wind Corridor Analysis and Climate Evaluation with Biotop Map and Airborne LiDAR Data (비오톱 지도와 항공라이다 자료를 이용한 바람통로 분석 및 기후평가)

  • Kim, Yeon-Mee;An, Seung-Man;Moon, Soo-Young;Kim, Hyeon-Soo;Jang, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.148-160
    • /
    • 2012
  • The main purpose of this paper is to deliver a climate analysis and evaluation method based on GIS by using airborne LiDAR data and Biotop type map and to provide spatial information of climate analysis and evaluation based on Biotop type Map. At first stage, the area, slope, slope length, surface, wind corridor function and width, and obstacle factors were analyzed to obtain cold/fresh air production and wind corridor evaluation. In addition, climate evaluation was derived from those two results in the second stage. Airborne LiDAR data are useful in wind corridor analysis during the study. Correlation analysis results show that ColdAir_GRD grade was highly correlated with Surface_GRD (-0.967461139) and WindCorridor_ GRD was highly correlated with Function_GRD (-0.883883476) and Obstacle_GRD (-0.834057656). Climate Evaluation GRID was highly correlated with WindCorridor_GRD (0.927554516) than ColdAir_GRD (0.855051646). Visual validations of climate analysis and evaluation results were performed by using aerial ortho-photo image, which shows that the climate evaluation results were well related with in-situ condition. At the end, we applied climate analysis and evaluation by using Biotop map and airborne LiDAR data in Gwangmyung-Shiheung City, candidate for the Bogeumjari Housing District. The results show that the aerial percentile of the 1st Grade is 18.5%, 2nd Grade is 18.2%, 3rd Grade is 30.7%, 4th Grade is 25.2%, and 5th Grade is 7.4%. This study process provided both the spatial analysis and evaluation of climate information and statistics on behalf of each Biotop type.

Minimum-Entropy-Based Autofocus Method for Real SAR Images (실제 SAR 영상에서의 최소 엔트로피 기반의 자동 초점 기법 연구)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.366-374
    • /
    • 2018
  • In cases of airborne equipped with SAR, because the occurrence of motion is inevitable, it is necessary to apply autofocus techniques to SAR images to improve the image performance degradations caused by residual errors. Herein, a robust autofocus algorithm based on the minimum entropy criteria is proposed for the real SAR data in the spotlight mode. The convergence condition of the phase error estimation is checked at every iteration and if it is violated, the size of the phase error estimation is adjusted to the convergence condition. The real SAR raw data is used to demonstrate the excellent performance of the proposed algorithm.

Analysis of SAR Processing Performances with FJB Waveforms (FJB 파형을 이용한 SAR 영상 생성 기법 분석)

  • Kim, Eun-Hee;Roh, Ji-Eun;Park, Joon-Yong;Kim, Soo-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2017
  • Recently, the SAR-GMTI mode is becoming increasingly essential in airborne radar systems. While SAR requires wideband waveforms for high resolution imaging, GMTI requires narrowband waveforms for doppler processing, which makes general LFM waveforms difficult to use for SAR-GMTI. This paper analyses the FJB(Frequency Jump Burst) waveform, which is studied for the SAR-GMTI waveform, and presents the method for the pulse compression and SAR image formation using FJB waveforms. Simulation results show that there is little difference in performances between the FJB waveform and the LFM waveform.

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF

Differential analysis of the surface model driven from lidar imagery (라이다영상으로부터 유도된 지표모델의 2차 차분분석)

  • Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.298-302
    • /
    • 2010
  • This study proposes a differential method to analyze the properties of the topographic surface driven from lidar imagery. Although airborne lidar imagery provides elevation information rapidly, a sequence of extraction processes are needed to acquire semantic information about objects such as terrain, roads, trees, vegetation, and buildings. For the processes, the properties present in a given lidar data need to be analyzed. In order to investigate the geometric characteristics of the surface, this study employs eigenvalues of the Hessian matrix. For experiments, a lidar image containing university campus buildings with the point density of about 1 meter was processed and the results show that the approach is effective to obtain the properties of each land object Surface.

  • PDF