• Title/Summary/Keyword: Airborne hyperspectral sensor

Search Result 12, Processing Time 0.023 seconds

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing (초분광 항공원격탐사 테스트베드 구축 및 시험자료 획득)

  • Chang, Anjin;Kim, Yongil;Choi, Seokkeun;Han, Dongyeob;Choi, Jaewan;Kim, Yongmin;Han, Youkyung;Park, Honglyun;Wang, Biao;Lim, Heechang
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.161-172
    • /
    • 2013
  • The construction of hyperspectral test-bed dataset is essential for the effective performance of hyperspectral image for various applications. In this study, we analyzed the technical points for generating of optimal hyperspectral test-bed site for hyperspectral sensors and the efficiency of hyperspectral test-bed site. In this regard regions we analyzed existing construction techniques for generating test-bed site in domestic and foreign, and designed the test-bed site to acquire images from the airborne hyperspectral sensor. To produce a reference data from the image of constructed test-bed site, this study applied vicarious correction as a pre-processing and analyzed its efficiency. The result presented that it was ideal to use tarp for the vicarious correction, but it is possible to use the materials with constant spectral reflectance or with relatively low variance of spectral reflectance. The test-bed data taken in this study can be employed as the reference of domestic and foreign studies for hyperspectral image processing.

The Ship Detection Using Airborne and In-situ Measurements Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 항공관측 및 현장자료를 활용한 선박탐지)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Foucher, Pierre-Yves;Jang, Jae-Cheol;Lee, Moonjin;Kim, Tae-Sung;Kang, Won-Soo
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.535-545
    • /
    • 2017
  • Maritime accidents around the Korean Peninsula are increasing, and the ship detection research using remote sensing data is consequently becoming increasingly important. This study presented a new ship detection algorithm using hyperspectral images that provide the spectral information of several hundred channels in the ship detection field, which depends on high resolution optical imagery. We applied a spectral matching algorithm between the reflection spectrum of the ship deck obtained from two field observations and the ship and seawater spectrum of the hyperspectral sensor of an airborne visible/infrared imaging spectrometer. A total of five detection algorithms were used, namely spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), and spectral information divergence (SID). SDS showed an error in the detection of seawater inside the ship, and SAM showed a clear classification result with a difference between ship and seawater of approximately 1.8 times. Additionally, the present study classified the vessels included in hyperspectral images by presenting the adaptive thresholds of each technique. As a result, SAM and SID showed superior ship detection abilities compared to those of other detection algorithms.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

The Evaluation of on Land Cover Classification using Hyperspectral Imagery (초분광 영상을 이용한 토지피복 분류 평가)

  • Lee, Geun-Sang;Lee, Kang-Cheol;Go, Sin-Young;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • The objective of this study is to suggest the possibility on land cover classification using hyperspectal imagery on area which includes lands and waters. After atmospheric correction as a preprocessing work was conducted on hyperspectral imagery acquired by airborne hyperspectral sensor CASI-1500, the effect of atmospheric correction to a few land cover class in before and after atmospheric correction was compared and analyzed. As the result of accuracy of land cover classification by highspectral imagery using reference data as airphoto and digital topographic map, maximum likelihood method represented overall accuracy as 67.0% and minimum distance method showed overall accuracy as 52.4%. Also product accuracy of land cover classification on road, dry field and green house, but that on river, forest, grassland showed low because the area of those was composed of complex object. Therefore, the study needs to select optimal band to classify specific object and to construct spectral library considering spectral characteristics of specific object.

Method of Correcting Hyperspectral Image for Seabed Material Analysis of Coastal Area (연안 해저 재질 분석을 위한 초분광영상의 보정 방법)

  • SHIN, Myung-Sik;SHIN, Jung-Il;KIM, Ik-Jae;SUH, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Airborne or spaceborne remote sensing can increase the efficiency of seabed material surveys compared with field surveying using a vessel. For the same seabed material, the optical remote sensing image shows variation in the reflectance depending on the water depth, which is due to the absorption and scattering by the water column. This study suggests a correction procedure to use the hyperspectral image for seabed material analysis. The study is conducted in the coastal area from Sacheonjin Port to Gyungpo Beach in Gangwon-do. The hyperspectral image is acquired using the CASI-1500 sensor. The diffuse attenuation coefficient is estimated for each band through regression models between the water reflectance and depth. Then, the coefficient is applied to each band of the image. As a result, the completely corrected image can be interpreted for a deeper area, although the interpretable area is very shallow without water column correction. Additionally, the water column corrected image shows decreased variation of reflectance with various water depths.