• 제목/요약/키워드: Airborne hyperspectral imagery

검색결과 19건 처리시간 0.02초

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

항공 초분광 영상과 SAM 기법을 이용한 백화현상 탐지 -서해 도서 지역을 중심으로- (Detection of Urchin Barren Using Airborne Hyperspectral Imagery and SAM Technique - Focusing on the West Sea Island Areas)

  • 김용석
    • 한국환경과학회지
    • /
    • 제33권7호
    • /
    • pp.533-546
    • /
    • 2024
  • The coastal urchin barren phenomenon in our country began to spread and expand from the 1980s, centering on the southern coast and Jeju Island, and by the 1990s, it appeared along the east coast and nationwide. The urchin barren phenomenon is mainly conducted through field surveys by diving, but recently, various surveying techniques have been applied. In this study, a spectral library for terrestrial and marine areas was established for the identification of urchin barrens using airborne hyperspectral imagery, and the distribution area was analyzed through the SAM (spectral angle mapper) algorithm. An analysis of the urchin barren phenomenon in the five islands of the West Sea revealed that it occurrs in most areas, with the combined severity of the urchin barren phenomenon in Sapsido and Oeyeondo being approximately 19.9%. Hyperspectral imagery is expected to be highly useful not only for detecting the urchin barren phenomenon but also for managing and monitoring marine fishery resources through the classification of seaweeds.

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • 한국측량학회지
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구 (Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas)

  • 신지선;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.309-323
    • /
    • 2020
  • 원격탐사를 이용한 연안 해역의 클로로필 농도 추정은 대부분 다분광 위성 영상 분석을 통해 수행되어 오고 있다. 최근에는 초분광 영상을 활용한 다양한 연구가 시도되고 있으며, 특히 항공기 기반 초분광 영상은 높은 공간 해상도로 좁은 밴드 폭을 가진 수백 개의 밴드로 구성되어 기존의 다분광 위성 영상을 통한 클로로필 추정보다 연안 해역에서 매우 효과적일 수 있다. 본 연구에서는 연안 해역의 클로로필 농도 추정을 위해 초분광 및 위성 기반 클로로필 영상을 비교 검증을 수행하였다. 한반도 남해안에서 수행된 현장조사로 획득된 클로로필 농도 자료와 해수 스펙트럼 자료를 분석한 결과, 높은 클로로필 농도를 갖는 해수 스펙트럼은 570 nm와 680 nm 파장대역 부근에서 peak를 보였다. 이러한 스펙트럼 특징을 활용하여 클로로필 농도 추정을 위한 새로운 밴드비(570 / 490 nm)가 제시되었고, 밴드비와 현장 클로로필 농도 간의 회귀 분석을 통해 새로운 클로로필 경험식이 생성되었다. 현장 클로로필 농도와의 검증 결과, R2의 0.70, RMSE와 mean bias가 각각 2.43와 3.46 mg m-3으로 유효한 결과를 보였다. 새로운 경험식을 초분광 영상과 위성 영상에 적용한 결과, 초분광 클로로필 영상과 현장 클로로필 간의 평균 RMSE는 0.12 mg m-3로 위성 클로로필 영상에서 보다 더 높은 정확도로 클로로필 농도 추정 가능하였다. 이 결과를 통하여 초분광 영상을 활용하여 보다 높은 정확도로 연안 해역 클로로필 농도의 고해상도 공간 분포 정보 제공이 가능할 것으로 기대된다.

항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류 (Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery)

  • 이진덕;방건준;주영돈
    • 한국콘텐츠학회논문지
    • /
    • 제16권7호
    • /
    • pp.31-41
    • /
    • 2016
  • 하이퍼스펙트럴 영상을 이용하여 토지피복 분류를 정확히 수행하기 위해서는 전처리 작업으로서 대기보정을 거쳐야 한다. 항공 하이퍼스펙트럴 영상에 대하여 대기보정을 실시하고 대기보정 유 무에 따른 해수, 갯벌, 식생, 아스팔트, 콘크리트 등의 토지피복 항목별 분광반사율 특성을 비교하여 대기보정의 뚜렷한 효과를 확인할 수 있었다. 대기보정 후의 영상에 대하여 최대우도법, 분광각맵퍼법 등의 화소기반 감독분류기법으로 각각 토지피복 분류를 행하고 그 결과를 비교하였다. 분광각맵퍼법의 경우 임계각 $0.4^{\circ}$에서 노이즈를 최소화하면서 해수영역을 가장 양호하게 분류해 낼 수 있었다. 같은 개체라도 다양한 분광특성을 나타내는 하이퍼스펙트럴 영상의 경우 연안지역에서는 종래의 화소기반 분류기법보다는 축척, 분광 정보, 형태, 결 등을 종합적으로 고려하는 객체기반 분류기법이 더 우월할 것으로 사료된다.

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가 (Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery)

  • 김예지;최재완
    • 한국측량학회지
    • /
    • 제33권1호
    • /
    • pp.63-70
    • /
    • 2015
  • 영상융합 기법은 고해상도 영상을 이용하여 저해상도 영상의 공간해상도를 증대시키는 방법이다. 본 논문에서는 EO-1 위성에 탑재된 ALI 센서와 Hyperion 센서로부터 취득된 고해상도 흑백영상, 저해상도 다중분광 영상 및 초분광 영상을 활용한 초분광 영상의 융합기법에 대한 연구를 수행하였다. 특히, 초분광 영상과 다중분광 영상의 특성을 고려하여 초분광 영상의 블록을 구성하여 ALI 및 Hyperion 영상에 적용하고, 이에 따른 영상융합 기법의 성능을 평가하고자 하였다. 실험결과, 고해상도 흑백영상만을 사용한 융합결과와 비교하여 저해상도 다중분광 영상을 활용한 블록기반의 융합기법이 공간해상도를 효율적으로 향상시킬 수 있음을 확인하였으며, 제안된 융합기법이 기존의 블록기반 융합기법과 비교하여 분광왜곡을 최소화시킬 수 있음을 확인하였다. 이를 통해, 향후 발사될 다양한 초분광 위성 및 항공기 초분광 센서의 활용을 증대시킬 수 있을 것으로 판단된다.

초분광 영상을 이용한 토지피복 분류 평가 (The Evaluation of on Land Cover Classification using Hyperspectral Imagery)

  • 이근상;이강철;고신영;최연웅;조기성
    • 지적과 국토정보
    • /
    • 제44권2호
    • /
    • pp.103-112
    • /
    • 2014
  • 본 연구의 목적은 토지와 물이 포함된 지역에서 초분광 영상을 이용한 토지피복 분류 가능성을 제시하는데 있다. CASI-1500 항공 초분광 영상을 통해 취득한 초분광 영상에 대해 전처리 작업으로서 대기보정을 수행한 후, 대기보정 전 후에서 몇 개의 토지피복 클래스에 대해 대기보정 효과가 비교 분석되었다. 항공사진과 수치지형도와 같은 참조자료로 활용하여 초분광 영상에 의한 토지피복 분류결과를 분석한 결과, 최대우도법에서는 약 67.0%의 전체정확도를 나타내었으며, 최소거리법은 52.4%의 전체정확도를 보였다. 또한 도로, 밭, 비닐하우스에서는 토지피복 분류의 생산자 정확도가 높게 나타났으나, 하천, 산지, 초지지역에서는 매우 복잡한 객체로 구성되어 있기 때문에 토지피복 분류의 생산자 정확도가 낮게 나타났다. 따라서 향후에는 특정객체 분류를 위한 최적의 밴드선별과 객체 고유의 분광특성을 고려한 분광 라이브러리를 구축하는 연구가 필요하다.

분광각매퍼 기법을 적용한 항공기 탑재 초분광영상의 소규모 녹지공간 탐지 (Detection of Small Green Space in an Urban Area Using Airborne Hyperspectral Imagery and Spectral Angle Mapper)

  • 김태우;최돈정;위광재;서용철
    • 한국지리정보학회지
    • /
    • 제16권2호
    • /
    • pp.88-100
    • /
    • 2013
  • 도시녹지는 열섬현상을 감소시키고 여가나 휴식 공간으로 활용되는 등 도시민의 삶의 질을 향상시키는 중요한 역할을 하는 도시 기반시설이다. 그러나 양적인 개발효율에 치중한 관행으로 도시녹지의 체계적인 관리가 미흡했던 것이 사실이다. 녹지총량제와 같은 보존을 위한 제도적 틀은 갖추어 가고 있지만, 정확한 녹지량을 산정하는 기술적 측면은 상대적으로 보완할 여지가 크다. 최근 들어 원격탐사를 이용한 녹지나 도시 기반시설의 정량적 탐지를 수행한 다양한 연구들이 수행 되었다. 그러나 기존 연구들이 활용한 자료의 공간 해상도를 고려하였을 때 도시 내에 무수히 존재하는 소규모 녹지공간의 탐지가 효과적으로 되었다고 보기 힘들다. 이러한 맥락에서 본 연구에서는 초분광 영상(CASI-1500)을 활용한 도시 내 소규모 녹지에 대한 정량적 탐지를 수행하였다. 이를 위해 식생지수를 산출하여 소규모 녹지공간의 탐지 여부를 검토한 뒤, ISODATA와 SAM 기법을 적용한 감독분류, 무감독분류를 통해서 각 방법들이 소규모 녹지공간 탐지에 적절한지 비교하였다. 미분류, 불투수성, 녹지로 의심되는 영역, 녹지의 4개의 피복으로 분류하여 SAM 기법에 사용된 참조스펙트럼의 차이를 비교하였다.

차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택 (An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative)

  • 김태우;위광재;서용철
    • 한국지리정보학회지
    • /
    • 제16권4호
    • /
    • pp.16-28
    • /
    • 2013
  • 최근 초분광영상의 활용 연구사례와 다양한 분광지수들의 개발과 평가가 지속적으로 증가하고 있다. 특히 식생원격탐사 분야에서는 식생의 스트레스와 활력에 대한 지표로 식생지수가 사용되며 일반적으로 NIR과 red 파장대의 두 개 혹은 이상의 분광밴드를 선택적으로 사용하고 있다. 항공 초분광영상은 좁고 연속적인 수많은 밴드를 가지기 때문에 식생지수를 위한 밴드선택에 혼돈을 야기할 수 있다. 만약 식생지수를 개발하는 과정에서 사용된 밴드와 항공기를 이용해 취득한 센서의 밴드정보와 동일하지 않다면, 탐지 대상의 광학특성에 대한 설명력이 높은 적절한 밴드를 선택하는 것이 필요하다. 따라서 본 연구에서는 NIR과 red 파장영역에 속하는 4개의 후보밴드를 선택하고 이들의 조합으로 계산된 NDVI(normalized difference vegetation index)와 MSRI(modified simple ratio index)를 산출하였다. 산출된 식생지수들에 대해서 각 지수들의 변이를 살펴보기 위해 변화탐지 기법의 차연산(image differencing)을 이용하였다. 또한 보다 직접적인 분석을 위해서 분광미분(spectral derivative)을 통하여 임상도로 구분되는 식생의 종류별 분광특성을 가장 잘 설명할 수 있는 밴드를 확인하였다. 연구 결과로 후보밴드들 중에서 red #3(680.2nm)와 NIR #2(801.7nm)가 수림에 영향을 적게 받고 밴드의 변동이 적은 적절한 밴드로 선택할 수 있었다.