DOI QR코드

DOI QR Code

An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative

차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택

  • 김태우 (부경대학교 공간정보시스템공학과) ;
  • 위광재 ((주)지오스토리) ;
  • 서용철 (부경대학교 공간정보시스템공학과)
  • Received : 2013.08.05
  • Accepted : 2013.10.29
  • Published : 2013.12.31

Abstract

Recently the various applications and spectral indices development of airborne hyperspectral imagery(A-HSI) has been increased. Especially the vegetation indices (VIs) were used to verify stress and vigor of vegetation. The VIs needs two or more spectral bands selectively to calculate as NIR(near infrared) and red wavelength. The A-HIS has specific band characteristics as narrow, continues and many. The A-HIS has narrow, continues and many specific band characteristics. That could be make it confuse which of bands could be explained for appropriate vegetation characteristics. If the A-HIS bands is not the same the wavelength with VIs' development band setting, then it need a selection adequate for spectral characteristics of target vegetation. Therefore we set 4 substitute bands for NIR and red wavelength respectively and calculated two VIs combined with substitute bands such as NDVI(normalized difference vegetation index) and MSRI(modified simple ratio index). To consider the variation of each VIs, we adapted the image differencing method of change detection technique. Also, we used spectral derivative to identify appropriate bands for spectral characteristics of digital forest cover type map. The result of adequate bands for two VIs selected red #3 as 680.2nm and NIR #2 as 801.7nm. This wavelength was good for any forest type in low variations.

최근 초분광영상의 활용 연구사례와 다양한 분광지수들의 개발과 평가가 지속적으로 증가하고 있다. 특히 식생원격탐사 분야에서는 식생의 스트레스와 활력에 대한 지표로 식생지수가 사용되며 일반적으로 NIR과 red 파장대의 두 개 혹은 이상의 분광밴드를 선택적으로 사용하고 있다. 항공 초분광영상은 좁고 연속적인 수많은 밴드를 가지기 때문에 식생지수를 위한 밴드선택에 혼돈을 야기할 수 있다. 만약 식생지수를 개발하는 과정에서 사용된 밴드와 항공기를 이용해 취득한 센서의 밴드정보와 동일하지 않다면, 탐지 대상의 광학특성에 대한 설명력이 높은 적절한 밴드를 선택하는 것이 필요하다. 따라서 본 연구에서는 NIR과 red 파장영역에 속하는 4개의 후보밴드를 선택하고 이들의 조합으로 계산된 NDVI(normalized difference vegetation index)와 MSRI(modified simple ratio index)를 산출하였다. 산출된 식생지수들에 대해서 각 지수들의 변이를 살펴보기 위해 변화탐지 기법의 차연산(image differencing)을 이용하였다. 또한 보다 직접적인 분석을 위해서 분광미분(spectral derivative)을 통하여 임상도로 구분되는 식생의 종류별 분광특성을 가장 잘 설명할 수 있는 밴드를 확인하였다. 연구 결과로 후보밴드들 중에서 red #3(680.2nm)와 NIR #2(801.7nm)가 수림에 영향을 적게 받고 밴드의 변동이 적은 적절한 밴드로 선택할 수 있었다.

Keywords

References

  1. Asner, G.P., J.A. Hicke and D.B. Lobell. 2003. Per-pixel analysis of forest structure-vegetation indices, spectral mixture analysis, and canopy reflectance modeling. In: M.A. Wulder and S.E. Franklin(ed.). Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer Academic Publishers, Stanford, California, USA. pp.209-254.
  2. Asrar, G., M. Fuchs, E.T. Kanemasu and J.L. Hatfield. 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal 76(2):300-306. https://doi.org/10.2134/agronj1984.00021962007600020029x
  3. Avery, T.E., and G.L. Berlin. 1992. Fundamentals of Remote Sensing and Airphoto Interpretation(5th). Macmillan Publishing Company, New York, 476pp.
  4. Bannari, A., D. Morin, F. Bonn and A.R. Hute. 1995. A review of vegetation indices. Remote Sensing Review 13 (1-2):95-120. https://doi.org/10.1080/02757259509532298
  5. Broge, N.H. and E. Leblanc. 2000. Comparing prediction power an stability of broadband and hyperspectral vegetation indices for estimating of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76(2):156-172.
  6. De Jong, S.M., E.J. Pebesma and B. Lacaze. 2003. Aboveground biomass assessment of Mediterranean forest using airborne imagine spectrometry : the DAIS Peyne experiment. Journal of Remote Sensing 24(7):1505-1520. https://doi.org/10.1080/01431160210145560
  7. Gao, X., A.R. Huete, W. Ni and T. Miura. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment. 74(3):609-620. https://doi.org/10.1016/S0034-4257(00)00150-4
  8. Haboudane, D., J.R. Miller, E. Pattey, P. Zarco-Tejada and I.B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90(3):337-352. https://doi.org/10.1016/j.rse.2003.12.013
  9. Huang, F., J. Ling, A. Shi and L. Xu. 2010. A band selection method for hyperspectral images using choquet fuzzy integral. Journal of Computers 5(7):1019-1026.
  10. Jang, G.S., K.A. Sudduth, S.Y. Hong, N.R. Kitchen and H.L. Palm. 2006. Relating hyperspectral image bands and vegetation indices to corn and soybean yield. Korean Journal of Remote Sensing 22(3):183-197. https://doi.org/10.7780/kjrs.2006.22.3.183
  11. Jensen, J.R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective(3rd). SIGMA Press, Seoul, 580pp.
  12. Kim, G.S. and T.K. Yim, 2005. Analysis of the spatial and temporal variability of NDVI time series in South Korea. The Proceeding of Korea Water Resources Association 2005 Conference. pp.1-4 (김광섭, 임태경. 2005. 남한지역 정규식생지수의 시공간 변화도 분석. 한국수자원학회학술발표대회 1-4쪽).
  13. Kim, T.W., D.J. Choi, G.J. We and Y.C. Suh. 2013. Detection of small green space in an urban area using airborne hyperspectral imagery and spectral angle mapper. Journal of Korean Association of geographic information Studies 16(2):88-100 (김태우, 최돈정, 위광재, 서용철. 2013. 분광각매퍼 기법을 적용한 항공기 탑재 초분광영상의 소규모 녹지공간 탐지. 한국지리정보학회지 16(2):88-100). https://doi.org/10.11108/kagis.2013.16.2.088
  14. Kim, T.W., G.J. We and Y.C. Suh. 2012. Correlation analysis with vegetation indices and vegetation- endmembers from airborne hyperspectral data in forest area. Journal of Korean Association of geographic information Studies 15(3):52-65 (김태우, 위광재, 서용철. 2012. 산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생 endmember와 식생지수의 상관분석. 한국지리정보학회지 15(3):52-65). https://doi.org/10.11108/kagis.2012.15.3.052
  15. Myneni, R.B., F.G. Hall, P.J. Sellers and A.L. Marshark. 1995. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing 33(2):481-486. https://doi.org/10.1109/36.377948
  16. Roujean, J.L. and F.M. Breon. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment 51:375-384. https://doi.org/10.1016/0034-4257(94)00114-3
  17. Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Proceeding of Third ERTS-1 Symposium, NASA Goddard, NASA SP-351 pp.309-317.
  18. Sellers, P.J., J.A. Berry, G.J. Collatz, C.B. Field and F.G. Hall. 1992. Canopy reflectance, photosysnthetisis and transpiration, III a reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment 42:187-216. https://doi.org/10.1016/0034-4257(92)90102-P
  19. Shin. S.H., G.H. Koh, D.S. Kim and M.W. Pyeon. 2011. Band aggregation of hyperspectral images to detect vegetation information for U-City, proceeding of ICCC. pp.393-394.
  20. Sritakae, A. 2006. Predictive relations of forest stand parameters from hyperspectral remote sensing at Thetford forest, the UK. Master Thesis, International institute for Geo-Information Science and Earth Obsevationm Enschede, The Netherlands. 75pp.
  21. Thenkabali, P.S., R.B. Smith and E. De Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71(2):158-182. https://doi.org/10.1016/S0034-4257(99)00067-X
  22. Tucker, C.J. 1979. Red and photographic infrared linear combination for monitoring vegetation. Remote Sensing of Environment 8(2):127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  23. Zarco-Tejada, P.J., A. Berjon and J.R. Miller. 2004. Stress detection in crops with hyperspectral remote sensing and physical simulation models. Airborne Imaging Spectroscopy Workshop, 8 October 2004, Bruges, Belgium.
  24. Zarco-Tejada, P.J., J.R. Miller, T.L. Noland, G.H. Mohanmmed and P.H. Sampson. 2001. Scaling-up and model inverson methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geosciences and Remote Sensing 39(7):1491-1507. https://doi.org/10.1109/36.934080