• Title/Summary/Keyword: Airborne fungus

Search Result 16, Processing Time 0.021 seconds

Microbiological Identification and Distribution of Metal Components in Suspended Particulate Matter during Yellow Sand Phenomena at TaeAn Region in 2003 (2003년 태안지역에서 황사 부유분진의 미생물학적 동정과 금속 성분 및 농도)

  • Bae, Kang Woo;Kim, Jong Ho;Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.167-173
    • /
    • 2005
  • Background : Airborne particles during Yellow Sand phenomena are known to be associated with the respiratory disease. The purpose of this study was to evaluate the concentration and metal component properties of Yellow Sand particles and compare with airborne microbial concentration and species in non Yellow Sand and Yellow Sand phenomena. Methods : Samplings were carried out in 2002 in Seosan, during non Yellow Sand and Yellow Sand phenomena. Samples were taken using the 8-stage Cascade impactor and metallic elements were analyzed by XRF. Those were culture on the media for bacterial and fungal culture and celline for virus. Results : The concentration of total suspended particulate matter were respectively $80.2{\mu}g/m^3$, $40.3{\mu}g/m^3$ in non Yellow Sand and Yellow Sand phenomena. The concentration of metallic elements such as Ca, Fe, Cu and Zn in Yellow Sand phenomena were higher than its in non Yellow Sand. Two bacteria, Bacillus species and Staphylococcus were grown in two periods. In both periods, several fungal spores(Mucor species, Cladosporum, Alternaria, Aspergillus, Penicillium, and Alternaria species) were identified. The differences of bacteria and fungus species not observed in Yellow Sand and non Yellow Sand. Any viruses were not isolated in between both periods. Conclusions : The concentration of total suspended particulate matter and some metallic elements in Yellow Sand phenomena were higher than its in non Yellow Sand. The difference of bacteria and fungus species was not observed in non Yellow Sand and Yellow Sand phenomena.

Real-time Monitoring of Temperature and Relative Humidity and Visualization of Pest Survey Data for Integrated Pest Management in Collection Storage Area (유물 공간의 종합적 유해생물 관리(Integrated Pest Management)를 위한 실시간(Real-Time) 온습도 모니터링 및 유해 생물 조사 자료의 시각화)

  • Im, Ik-Gyun;Lim, Seong-Duk;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2021
  • Temperature and humidity data collection using real-time sensors and data loggers was conducted for integrated pest management in the collection storage and exhibition space of the Jeongnimsaji Museum, Buyeo. The real-time temperature and humidity monitoring system collected measurement data every 30 minutes and enabled real-time confirmation of the data through a linked application. If the temperature and humidity data measured in the real-time temperature and humidity monitoring system exceeds the set range, a push notification was sent to the mobile phone of the person in charge to provide status information to establish a continuous management system. Through this, it was possible to immediately recognize and take action when the temperature range exceeded the recommended relic temperature in August. We performed data visualization on the concentration of airborne fungus in the storage area and the inflow path and density of insects. Based on the recommended criteria presented by the National Institute of Cultural Heritage, The data on the spatial and temporal concentration of airborne fungus inside the collection storage were found to be maintained at a value below the standard recommended by the National Institute of Cultural Heritage (80 CFU/m3). Also, as a result of the insect inflow survey, no insects were captured inside the storage area, and in the case of the exhibition space, insects such as Scutigera coleoptrata, Loxoblemmus arietulus, Diestrammena asynamora, Koreoniscus racovitzai were captured. Based on this, as a result of visualization according to the individual density of captured insects by area, it was confirmed that the main inflow paths of insects were the external entrance and the toilet area.

Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus

  • Yu, Jae-Hyuk
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.229-237
    • /
    • 2010
  • Members of the genus Aspergillus are the most common fungi and all reproduce asexually by forming long chains of conidiospores (or conidia). The impact of various Aspergillus species on humans ranges from beneficial to harmful. For example, several species including Aspergillus oryzae and Aspergillus niger are used in industry for enzyme production and food processing. In contrast, Aspergillus flavus produce the most potent naturally present carcinogen aflatoxins, which contaminate various plant- and animal-based foods. Importantly, the opportunistic human pathogen Aspergillus fumigatus has become the most prevalent airborne fungal pathogen in developed countries, causing invasive aspergillosis in immunocompromised patients with a high mortality rate. A. fumigatus produces a massive number of small hydrophobic conidia as the primarymeans of dispersal, survival, genome-protection, and infecting hosts. Large-scale genome-wide expression studies can now be conducted due to completion of A. fumigatus genome sequencing. However, genomics becomes more powerful and informative when combined with genetics. We have been investigating the mechanisms underlying the regulation of asexual development (conidiation) and gliotoxin biosynthesis in A. fumigatus, primarily focusing on a characterization of key developmental regulators identified in the model fungus Aspergillus nidulans. In this review, I will summarize our current understanding of how conidiation in two aspergilli is regulated.

Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

  • Jung, Boknam;Lee, Sehee;Ha, Jiran;Park, Jong-Chul;Han, Sung-Sook;Hwang, Ingyu;Lee, Yin-Won;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.446-450
    • /
    • 2013
  • The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

A Lung Granuloma Case Possibly Associated with a Working Environment: A Case Report

  • Seehapanya, Sankom;Chaiear, Naesinee;Ratanawatkul, Pailin;Samerpitak, Kittipan;Intarawichian, Piyapharom;Wonglakorn, Lumyai
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.268-271
    • /
    • 2021
  • Lung granulomas are uncommon in Thailand. The disease typically develops from an occupational environment and is mostly caused by infection. Herein is a case report of a female patient, aged 48, working as a nurse in an Accident and Emergency Department at a hospital. Eighteen years prior to admission the patient was diagnosed with myasthenia gravis and pulmonary tuberculosis. The chest X-ray and CT scans showed a solitary pulmonary nodule in the lower left lung. The patient received an open thoracotomy with a left lobectomy. Granulomatous and nonseptate hyphae were found in the pathology diagnosis. The patient was thus diagnosed as having a lung granuloma. The galactomannan antigen test was positive. The solitary pulmonary nodule-found from the use of a Polymerase Chain Reaction (PCR) test-was an Aspergillus spp. The fungus culture was collected from air samples. The air samples were collected by the impaction technique using a microbial air sampler. Three types of Aspergillus spp. were found as well as Penicillium spp. and Monilia sitophila. The Aspergillus spp. was a match for the patient's disease. The patient was diagnosed as having a lung granuloma possibly Aspergillus nodule which was caused by airborne Aspergillus spp. from the occupational environment.

Ecological Studies on Lettuce Drop Disease Occurring under Controlled Cultivation Conditions in Drained Paddy Fields (답리작 상치 시설재배지에서의 균핵병 발생생태에 관한 연구)

  • Shin Dong Bum;Lee Joon Tak
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.252-260
    • /
    • 1987
  • Incidence of lettuce drop was observed throughout the growing season in the vinylhouse at the southern part of Korea, Kimhai. Occurrence of this disease was especially severe at the seedling stage. Number of sclerotia in surface soil $(30\times30\times5cm)$ was 22.0 at the seedling stage, and 5.3 at harvest in the infected area. Temperature for mycelial growth ranged from 5 to $30^{\circ}C$ with optimum temperature at $25^{\circ}C$. Sclerotia were formed fewer at low temperature, but their size was larger resulting in heavier dry weight than that at high temperature. The apothecia were formed from the sclerotia that were buried in March, April and September upto 3cm soil depth, but formed from those buried only 1 em soil depth in October. Sclerotia buried in June and December did not form apothecia regardless of soil depth by 90 days. The sclerotia buried in the 5cm of soil depth did not form apothecia. Sclerotia that were embedded in wet or flooded soil at $25^{\circ}C$ and $30^{\circ}C$ for 5 weeks lost their viability. Infection of lettuce was possible with mycelia originated from sclerotia on autoclaved lettuce plant fragments. The fungus was pathogenic on 25 plant species in 8 families in artificial inoculation tests. Lettuce seedlings appeared to be infected by airborne ascospore originated from sclerotia on crops and weeds around paddy fields, because sclerotia existing in soil might perish under long flood conditions during rice cultivation.

  • PDF