• Title/Summary/Keyword: Airborne Radar

Search Result 103, Processing Time 0.02 seconds

Fast Spectrum Sensing in Radar-Interfered Airborne Cognitive Radio Systems (레이다 신호의 간섭 환경에서 항공 인지무선 시스템의 빠른 스펙트럼 센싱)

  • Kim, Soon-Seob;Choi, Young-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.655-662
    • /
    • 2012
  • In this work, we propose an airborne cognitive radio system that searches a new spectrum band to avoid a communication interruption due to the interference from many radar signals. We develop a method of fast spectrum sensing based on an effective frequency by recognizing the interfering radar as well as geographical information. This effective frequency is calculated by the free-space path loss between a base station and a fighter with the speed parameter. From our analysis, it is verified that the maximum frequency searching time is reduced by half by using our method.

Development of Real-Time Generation Methods of Simulated Surface Clutter Signals for Airborne Radar (항공기 레이다를 위한 모의 지상 클러터 신호의 실시간 생성 방법 개발)

  • Kim, Tae-Hyung;Moon, Hyun-Wook;Lee, Sung-Won;Ryu, Seong-Hyun;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.176-187
    • /
    • 2016
  • It takes considerable time to generate accurate clutter signal using conventional clutter generation scheme. In this paper, real-time schemes are proposed, which have reasonable accuracy and are applicable to testing the radar performance. Proposed methods are compared through the simulation, which represented that clutter signal can be generated in real-time when using proposed methods for simulated signal generator.

Inter-Radar Interference Impact Analysis on the Basis of Radar Interference Protection Criteria (레이다 간섭 보호 기준에 따른 레이다 간 상호 간섭 영향 분석)

  • Yang, Joo-Youl;Jung, Jung-Soo;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.657-662
    • /
    • 2008
  • Inter-radar interferences may cause the critical impact to the radar detection performance because radar operates with high power and wideband. In this paper, the international criteria for radar interference protection is reviewed based on the ITU-R recommendation, and the radar interference analysis model is presented by taking into account the radar operating environments such as ground, airborne and spaceborne radars. Finally, the simulation results are presented with the interference Impact analysis in various radar environments.

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

Study on MMTI Signal Processing Algorithm and Analysis of the Performance for Periscope Detection in Airborne Radar (항공용 레이다를 이용한 잠망경 탐지 MMTI 신호처리 기법 연구 및 성능 분석)

  • Jung, Jae-Hoon;Lee, Jae-Min;Youn, Jae-Hyuk;Shin, Hee-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.661-669
    • /
    • 2017
  • This paper describes an MMTI(Maritime Moving Target Indicator) for periscope detection in airborne radar. Firstly, we analyze the characteristics of sea clutter, sea targets. Secondly, we study the differences between GMTI(Ground Moving Target Indicator) and MMTI. This paper proposes an optimal MMTI operating environment and method. We also suggest a signal processing algorithm using STAP(Space-Time Adaptive Processing) for detecting small RCS target moving low speed. The detection probability for moving target with MDV(Minimum Detectable Velocity) is simulated under various RCS and multi-channel system. Finally, we analyze the major performance for range, velocity and azimuth accuracy.

Cramér-Rao Lower Bound of Multipath Angle Estimation for Low-Flying Target of Dual-Frequency Airborne Radar (항공기 레이다에 있어 두 개의 주파수를 사용하였을 때 저고도 표적 다중경로 각도 추정의 CRLB)

  • Jung, Ji Hyun;Kim, Jinuk;Lee, Joohyun;Chun, Joohwan;Oh, Yougeun;Suh, Jinbae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.373-379
    • /
    • 2019
  • If two signals with the same single-tone frequency and differing phases impinge simultaneously on an antenna at slightly differing angles, then a large error in the angle estimation might occur if the phase difference is either $0^{\circ}$ or $180^{\circ}$. This phenomenon might arise with an airborne fire-control radar, which has a relatively small bandwidth, for a low-flying target over the sea or terrain surface. In this paper, we show that the $Cram{\acute{e}}r$-Rao lower bound for such a target can be significantly lowered with the use of two frequencies.

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.

Operational Concept Design and Verification for Airborne SAR System (항공탑재 SAR 시스템 운용개념 설계 및 검증)

  • Lee, Hyon-Ik;Kim, Se-Young;Jeon, Byeong-Tae;Sung, Jin-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.588-595
    • /
    • 2013
  • Airborne SAR system is the imaging Radar system that is loaded on a manned or unmanned aircraft, which is in charge of high quality image acquisition and moving target detection. This paper describes the operational requirements for the Airborne SAR system and suggests the operational concept to satisfy the requirements. To be specific, it describes the interface with airborne system, state definition and transition, operation mode based on mission definition file, fault management, and data storing and transmission concept. Finally, it gives the ground test results to verify the SAR system operational concept.

Analysis Technique for Moving Targets on Single-Channel Airborne FMCW-SAR Image (항공기 기반 단일채널 FMCW-SAR 영상 내 이동물체 분석기법)

  • Hwang, Ji-hwan;Kim, Duk-jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.523-531
    • /
    • 2018
  • An analysis technique for detecting moving targets on a single-channel airborne frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) image is presented. To analyze the relative velocities of moving targets, an FMCW-based signal model for stationary and moving targets was studied, and a SAR ambiguity function considering its signal model was simulated. The relative velocities of the moving targets on a reconstructed SAR image can be estimated by peak searching of the SAR ambiguity function, and the stationary and moving targets are easily distinguished when there is a large variation of the relative velocity. Analysis results of the moving targets on a reconstructed FMCW-SAR image, using practical airborne data and a SAR ambiguity process, are compared with the in situ testing in the study area.

Design and Noise Figure Analysis of Coherent Transceiver for Airborne Radar (비행탑재용 레이다의 코히어런트 송수신단 설계 및 잡음지수 해석)

  • Woo, Duk-Jae;Kim, Sang-Joong;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 2004
  • To achieve functions of doppler measurement, MTI(Moving Target Indicator), high-resolution, and others in radar system, all circuits of transmitter and receiver are to be performed in coherent system. In this paper, we use TWTA(Traveling Wave Tube Amplifier), STALO(Stable Local Oscillator) and COHO(Coherent Oscillator) to design of coherent radar transceiver, and calculates noise figure of designed receiver. Using radar equation calculated noise figure, maximum detecting range of each transmitting mode can be calculated.

  • PDF