• Title/Summary/Keyword: Air-ocean interaction

Search Result 66, Processing Time 0.028 seconds

Construction of Gridded Wind-stress Products over the World Ocean by Tandem Scatterometer Mission

  • Kutsuwada Kunio;Kasahara Minoru;Morimoto Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.192-195
    • /
    • 2004
  • Products of gridded surface wind and windstress vectors over the world ocean have been constructed by satellite scatterometer data with highly temporal and spatial resolutions. Even if the ADEOS-II/SeaWinds has supplied surface wind data only for short duration in Apr. to Oct. 2003 to us, it permits us to construct a product with higher resolution together with the Qscat/SeaWinds. In addition to our basic product with its resolution of $1^{\circ}\times1^{\circ}$ in space and daily in time, we try to construct products with $1/2^{\circ}\times1/2^{\circ}$ and semi- and quarter-daily resolution. These products are validated by inter-comparison with in-situ data (TAO and NDBC buoys), and also compared with numerical weather prediction(NWP) ones (NCEP reanalysis). Result reveals that our product has higher reliability in the study area than the NCEP's. For the open ocean regions in the middle and high latitudes where there are no in-situ data, we find that there are clear differences between them. Especially in the southern westerly region of 400-600S, the' wind-stress magnitudes by the NCEP are significantly larger than the others, suggesting that they are overestimated. We also calculate wind-stress curl field that is an important factor for ocean dynamics and focus its spatial character in the northwestern Pacific around Japan. Positive curl areas are found to cover from southwest to northeast in our focus region and almost correspond to the Kuroshio path. It is suggested that the vorticity field in the lower atmosphere is related to the upper oceanic one, and thus an aspect of air-sea interaction process.

  • PDF

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

Numerical analysis of acoustic radiation efficiency of plate structures with air bubble layers (기포층을 갖는 판 구조물의 음향 방사 효율에 관한 수치해석)

  • Sung-Ju Park;Kookhyun Kim;Cheolsoo Park;Jaehyuk Lee;Keunhwa Lee;Cheolwon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.227-232
    • /
    • 2023
  • Underwater noise pollution has a significant impact on the marine environment. This study proposed a simple approach to estimate the acoustic radiation efficiency of structures with air bubble layers. The method considered the insertion loss caused by the air bubble layer through post-processing of numerical results, assuming that insertion loss is equivalent to attenuation as demonstrated by previous studies. The proposed approach was validated by comparing it with a fully coupled analysis for plate structure models. The commercial finite element program COMSOL Multiphysics was used for the acoustic-structure interaction analysis, and the acoustic characteristics of air bubble layer for the fully coupled analysis was simulated by on the Commander and Prosperetti theory. The trends indicated good agreement between the simple approach and the fully coupled analysis in terms of radiation efficiency. It is confirmed that the proposed method is providing insight into the principal mechanism of underwater noise reduction for the bubble layer on the wedge-shaped structure.

On the Development of 2012 El Niño (2012 엘니뇨의 발달 분석)

  • An, Soon-Il;Choi, Jung
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.465-472
    • /
    • 2012
  • Using various observed data, we examined the evolution of tropical Pacific sea surface temperature (SST) during 2011-2012, with focusing on the development of 2012 El Ni$\tilde{n}$o. It is observed that a La Ni$\tilde{n}$a event during 2011 was followed by a moderate El Ni$\tilde{n}$o during 2012 summer. The 2012 summer El Ni$\tilde{n}$o initiated near the west coast of South America on February 2012, and continued to expand westward till August. Given this evolutionary pattern, the 2012 summer El Ni$\tilde{n}$o can be categorized as 'Eastern Pacific (EP) El Ni$\tilde{n}$o' because Ni$\tilde{n}$o-3 index is greater than Ni$\tilde{n}$o-4 index, and it may be the first well-defined EP El Ni$\tilde{n}$o since 2001. On February 2012, this event was initiated mainly by the local air-sea interaction, and at the same time the ocean heat content was accumulated over the tropical western Pacific due to the easterly wind anomaly over the tropical western Pacific. Then, the accumulated heat content slowly propagates to the tropical eastern Pacific, which attributes to maintain El Ni$\tilde{n}$o state during 2012 summer. After August, the positive SST anomaly over the equatorial eastern Pacific decays possibly due to the exhausted heat content and the weakening of air-sea interaction, but the weak positive SST anomaly over the central Pacific remains till now (2012 November).

Relationship between Weather factors and Water Temperatures, Salinities in the West Sea of Korea (한국 서해에서 기상인자와 수온, 염분과의 관계)

  • Lee Jong Hee;Kim Dong Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.181-185
    • /
    • 2003
  • the effect if atmosphere is more important in the West sea of Korea than in other seas because of shallow water and heat storage if the water. The serial oceanographic observation data and coastal station data from NFRID, and the atmosphere data from KMA were used in order to find out the relationship between them The highest water temperature, salinity and weather factor were recorded in Aug, and the lowest of them in Feb. As the water deepens, the maximum time leg in water temperature and the minimum time leg in salinity. Water temperature have the maximum in Oct, the minimum in Apr at 75m of the 311-07 station with 100m depth water temperature (WT)-air temperature, WT-precipitation (Preci.) and salinity (Sal)-wind speed (WS) were in direct proportion, but WT-WS, Sal-AT and Sal-Preci in inverse proportion Water temperature and salinity I-ave time leg at the same depth the maximum had more the delay of $2\~4$ months at a depth if 20 meters than at the surface in all stations except for salinity at 307-05.

  • PDF

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.

Time Series Simulation of Explosive Charges In Shallow Water Using Ray Approach

  • Hahn, Jooyoung;Lee, Seongwook;Na, Jungyul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.133-140
    • /
    • 2003
  • A time series simulation is presented by a ray approach for the simulating the received waveform of a broadband acoustical signals interacting with the ocean boundaries. The environment is assumed to be horizontally stratified, and the seafloor is described in terms of homogeneous fluid half-space. The ray approach includes the effects of reflection from the air-water, water-sediment interface and phase shifts due to boundaries interaction. To generate time series, we assume that the acoustic energy propagates from source to receiver along eigenrays and represent the action of the bottom on the incident wave by a linear filter and characterized in the frequency domain by the transfer function. As example application, the time series for an explosive source in a shallow water environment is calculated and analyzed in terms of acoustical process. good agreement with measured time series is demonstrated.

Study on sea fog detection near Korea peninsula by using CMS-5 Satellite Data (CMS-5 위성자료를 이용한 한반도 주변 해무탐지 연구)

  • 윤홍주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.597-601
    • /
    • 2000
  • Sea fog/stratus is very difficult to detect because of the characteristics of air-sea interaction and locality, and the scantiness of the observed data from the oceans such as ships or ocean buoys. The aim of our study develops new algorism for sea fog detection by using Geostational Meteorological Satellite-5(CMS-5) and suggests the technics of its continuous detection.

  • PDF

Climatological Variability of Multisatellite-derived Sea Surface Temperature, Sea Ice Concentration, Chlorophyll-a in the Arctic Ocean (북극해에서 다중위성 자료를 이용한 표층수온, 해빙농도 및 클로로필의 장기 변화)

  • Kim, Hyuna;Park, Jinku;Kim, Hyun-Cheol;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.901-915
    • /
    • 2017
  • Recently, global climate change has caused a catastrophic event in the Arctic Ocean, directly and indirectly. The air-sea interaction has caused the significant sea-ice reduction in the Arctic Ocean, and has been accelerating the Arctic warming. Many scientists are worried about the Arctic environment change, suggesting that many of anomalous events will produce direct or indirect biophysical effects on the Arctic. The aim of this study is to understand the inter-annual variability of the Arctic Ocean in wide-view using multi-satellite-derived measurements. Sea surface temperature (SST) and sea ice concentration (SIC) data were obtained from Optimum Interpolation Sea Surface Temperature (OISST) and ECMWF ERA-Interim, respectively. Chlorophyll-a concentration (CHL) was obtained from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Aqua sensor from MODerate resolution Imaging Spectroradiometer (MODIS-Aqua) sensor which has continuously observed since 1998. From 1998 to 2016 summer in the Arctic Ocean which was defined as regions over $60^{\circ}N$ in this study, there were three consequences that CHL increase ($0.15mg\;m^{-3}\;decade^{-1}$), SST warming ($0.43^{\circ}C\;decade^{-1}$) and SIC decrease ($-5.37%\;decade^{-1}$). While SST and SIC highly correlated each other (r = -0.76), a relationship between CHL and SIC was very low ($r={\pm}0.1$) because of data limitations. And a relationship between CHL and SST shows meaningful results ($r={\pm}0.66$) with regional differences.

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.