Construction of Gridded Wind-stress Products over the World Ocean by Tandem Scatterometer Mission

  • Kutsuwada Kunio (School of Marine Science and Technology, Tokai University) ;
  • Kasahara Minoru (School of Marine Science and Technology, Tokai University) ;
  • Morimoto Naoki (School of Marine Science and Technology, Tokai University)
  • Published : 2004.10.01

Abstract

Products of gridded surface wind and windstress vectors over the world ocean have been constructed by satellite scatterometer data with highly temporal and spatial resolutions. Even if the ADEOS-II/SeaWinds has supplied surface wind data only for short duration in Apr. to Oct. 2003 to us, it permits us to construct a product with higher resolution together with the Qscat/SeaWinds. In addition to our basic product with its resolution of $1^{\circ}\times1^{\circ}$ in space and daily in time, we try to construct products with $1/2^{\circ}\times1/2^{\circ}$ and semi- and quarter-daily resolution. These products are validated by inter-comparison with in-situ data (TAO and NDBC buoys), and also compared with numerical weather prediction(NWP) ones (NCEP reanalysis). Result reveals that our product has higher reliability in the study area than the NCEP's. For the open ocean regions in the middle and high latitudes where there are no in-situ data, we find that there are clear differences between them. Especially in the southern westerly region of 400-600S, the' wind-stress magnitudes by the NCEP are significantly larger than the others, suggesting that they are overestimated. We also calculate wind-stress curl field that is an important factor for ocean dynamics and focus its spatial character in the northwestern Pacific around Japan. Positive curl areas are found to cover from southwest to northeast in our focus region and almost correspond to the Kuroshio path. It is suggested that the vorticity field in the lower atmosphere is related to the upper oceanic one, and thus an aspect of air-sea interaction process.

Keywords