• Title/Summary/Keyword: Air-foil Bearing

Search Result 75, Processing Time 0.022 seconds

Study on Dynamic Characteristic & Performance of the Air Supply System for PEM Fuel Cell (고분자 전해질 연료 전지용 공기공급계의 동특성 및 성능에 대한 연구)

  • Lee, Hee-Sub;Kim, Olang-Ho;Lee, Yong-Bok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.45-53
    • /
    • 2006
  • Turbo-blower as an air supply system is one of the most important BOP (Balance of Plant) systems for FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power, and fuel cell demands a clean air. In this study, turbo-blower supported by air foil bearings is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. Analysis for confirming the stability and endurance is conducted. The rotordynamic stability was predicted using the numerical analysis of air foil bearings and it is verified through experimental works. In spite of various transient dynamic situation, the turbo-blower had stable performances. After the performance test, results are presented. The normal power of driving motor has about 1.6 kW with the 30,000 rpm operating range and the flow rate of air has maximum 160 SCFM. The test results show that the aerodymic performance and stability of turbo-blower are satisfied to the primary goals.

The Static and Dynamic Performance Analyses of Air Foil Journal Bearing for Various Bump Foil Stiffness (범프포일 강성변화에 대한 포일저널 베어링의 정적, 동적 성능해석)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • This paper presents the effects of the bump foil stiffness on the static and dynamic performance of the foil journal bearings. Reynolds equation is used for the static and dynamic performance analyses. To consider the deflection of top foil the top foil is modeled as a elastic beam and the bump foil is modeled as a spring. So in the static performance analysis the load capacity is compared to the various bump foil stiffness and in the dynamic performance analysis the trajectory of journal center is compared to the various bump foil stiffness.

Performance Test of Double-Bumped Air Foil Bearings (이중범프 공기포일베어링의 성능시험)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • This paper presents a experimental results for the performance evaluation of a double-bumped air foil bearing. The test results of a double-bumped AFB is compared with a single-bumped AFB at a heavily-loaded condition. The diameter of the test bearing is 50 mm, and the axial length is 50 mm. Nominal clearance of the single-bumped AFB is evaluated as $105{\mu}m$, and that of the double-bumped AFB is as $95{\mu}m$. The test of the AFBs are demonstrated at 3 test mode; the load variation mode, the speed variation mode, and start-stop mode. The single-bumped AFB demonstrated a upward load-carrying capacity of 95 N and a downward load-carrying capacity of 130 N at 20,000 rpm. The double-bumped AFB demonstrated a upward load-carrying capacity of 170 N and a downward load-carrying capacity of 170 N at 20,000 rpm. The single-bumped AFB demonstrated a downward lift-off speed of 16,300 rpm at 105 N. The double-bumped AFB demonstrated a downward lift-off speed of 15,400 rpm at 105 N. The start-stop test of the AFBs assure 5,000 cycle endurance life. The test results are compared with the theoretical calculation results. The test and theorectical results show thata double-bump air foil bearing provides a higher load-carrying capacity, stiffness and damping than a single-bump air foil bearing in a heavily-loaded condition.

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Dynamic Characteristics and Experimental Study on the Foil Bearings for High Speed Turbo Machinery (고속 터어보기계용 공기포일베어링에 대한 동특성 해석과 실험적 연구)

  • Hwang, Pyung;Kwon, Sung-In
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.64-71
    • /
    • 1998
  • In this study deals with measurement of the vibration amplitudes of rotor-bearing system supported by foil bearing were performed experimentally, and the stability of the system were analyzed by using those results. Considering initial operating friction, compare bearing lubricated with only air and bearing surface lubricated with oil. Analyzing the transient data, the understanding of the characteristics fur startup and shutdown of rotor-bearing system are available and the dynamic characteristics of the system also can be analyzed exactly.

An Analysis of Characteristics of Air-Lubricated Foil Journal Bearings (공기윤활 포일 베어링의 특성해석)

  • 김종수;이준형;최상규
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.97-108
    • /
    • 2001
  • This paper describes the development of performance analysis technique for a leaf-type gas lubricated fail bearing. Stiffness coefficient and frictional damping due to the slip between all contacts of leaves are evaluated for various leaf structures. The fluid film thickness and pressure distribution are computed but it is not considered the elastic deformation by film pressure. The analysis results include the effects that the curvature radius and the length of leaf and the friction coefficient have on the static and dynamic characteristics of the foil bearings.

Development of a 300 HP Class Turbo Blower with Air Foil Bearings (공기 포일 베어링을 사용하는 300마력급 터보송풍기 개발)

  • Kim, Kyeong-Su;Lee, Ki-Ho;Park, Ki-Cheol;Lee, Si-Woo;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.331-334
    • /
    • 2006
  • Air foil bearings have been attempted for application to industrial turbo machines, since they have several advantages over oil bearings in terms of endurance, simplicity, environment-friendliness, efficiency, sound and vibration, and small turbo machines with air foil bearings are in the market as the result. Recently, researches on widening the application spectrum of air foil bearings are in progress worldwide. In this paper, a 300 HP class turbo blower using air foil bearings is introduced. The turbo blower has a high speed PMSM(Permanent Magnet Synchronous Motor) driving a compressor, and air flow rate is designed to be $180\;m^3/min$ at pressure ratio of 1.6. The maximum rotational speed is set to 17,000 RPM to maximize the total efficiency with the result that the weight of rotor assembly is 26kg, which is expected to be the largest turbo machine with air foil bearings ever developed in the world.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings (고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구)

  • Jo Jun-Hyeon;Lee Yong-Bok;Kim Chang-Ho;Rhim Yoon-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF