• Title/Summary/Keyword: Air system model

Search Result 2,048, Processing Time 0.035 seconds

Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season (저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발)

  • Park, Jae-Wan;Ha, Yu-Shin;Kim, Ki-Dong;Park, Dae-Heum;Lee, Ki-Myung;Jun, Ha-Joon;Kwon, Soon-Gu;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • A study on modeling of medium temperature drops of the elevated-bench hydroponic system for strawberry cultivation during low temperature season was conducted. Four different conditions were used for the experiment. These consisted of two kinds of bed types (plant, V), four kinds of medium (rice, perlite, rice hulls80% and peatmoss20%, perlite80% and peatmoss20%), two kinds of mulched bed (mulched, non mulched) and four kinds of greenhouse air temperature (l.5, 3.2, 5.0, $6.7^{\circ}C$), and the results were summarized as follows: Temperature drop of medium in the V-bed was slower than that in the plant bed, showing better insulation effect of V-bed. Temperature drop of medium with mulching on the top of the bed was slower than the case without mulching, as a result, the beneficial effect of temperature drop was appeared in mulched bed. Linear regression of the temperature descent rate and the temperature difference between medium and air showed significant correlation. The regression equation for the Pearlite80% and Peatmoss20% in the V-bed was f(x) = -0.2656 + 0.1345x at the $R^2$ of 0.9269. Using the model, the temperature drop during night can be predicted for the various media at the different depths.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft (저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구)

  • Nam, Hong-Su;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

Analysis and Implication on the International Regulations related to Unmanned Aircraft -with emphasis on ICAO, U.S.A., Germany, Australia- (세계 무인항공기 운용 관련 규제 분석과 시사점 - ICAO, 미국, 독일, 호주를 중심으로 -)

  • Kim, Dong-Uk;Kim, Ji-Hoon;Kim, Sung-Mi;Kwon, Ky-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.225-285
    • /
    • 2017
  • In regard to the regulations related to the RPA(Remotely Piloted Aircraft), which is sometimes called in other countries as UA(Unmanned Aircraft), ICAO stipulates the regulations in the 'RPAS manual (2015)' in detail based on the 'Chicago Convention' in 1944, and enacts provisions for the Rules of UAS or RPAS. Other contries stipulates them such as the Federal Airline Rules (14 CFR), Public Law (112-95) in the United States, the Air Transport Act, Air Transport Order, Air Transport Authorization Order (through revision in "Regulations to operating Rules on unmanned aerial System") based on EASA Regulation (EC) No.216/2008 in the case of unmanned aircaft under 150kg in Germany, and Civil Aviation Act (CAA 1998), Civil Aviation Act 101 (CASR Part 101) in Australia. Commonly, these laws exclude the model aircraft for leisure purpose and require pilots on the ground, not onboard aricraft, capable of controlling RPA. The laws also require that all managements necessary to operate RPA and pilots safely and efficiently under the structure of the unmanned aircraft system within the scope of the regulations. Each country classifies the RPA as an aircraft less than 25kg. Australia and Germany further break down the RPA at a lower weight. ICAO stipulates all general aviation operations, including commercial operation, in accordance with Annex 6 of the Chicago Convention, and it also applies to RPAs operations. However, passenger transportation using RPAs is excluded. If the operational scope of the RPAs includes the airspace of another country, the special permission of the relevant country shall be required 7 days before the flight date with detail flight plan submitted. In accordance with Federal Aviation Regulation 107 in the United States, a small non-leisure RPA may be operated within line-of-sight of a responsible navigator or observer during the day in the speed range up to 161 km/hr (87 knots) and to the height up to 122 m (400 ft) from surface or water. RPA must yield flight path to other aircraft, and is prohibited to load dangerous materials or to operate more than two RPAs at the same time. In Germany, the regulations on UAS except for leisure and sports provide duty to avoidance of airborne collisions and other provisions related to ground safety and individual privacy. Although commercial UAS of 5 kg or less can be freely operated without approval by relaxing the existing regulatory requirements, all the UAS regardless of the weight must be operated below an altitude of 100 meters with continuous monitoring and pilot control. Australia was the first country to regulate unmanned aircraft in 2001, and its regulations have impacts on the unmanned aircraft laws of ICAO, FAA, and EASA. In order to improve the utiliity of unmanned aircraft which is considered to be low risk, the regulation conditions were relaxed through the revision in 2016 by adding the concept "Excluded RPA". In the case of excluded RPA, it can be operated without special permission even for commercial purpose. Furthermore, disscussions on a new standard manual is being conducted for further flexibility of the current regulations.

  • PDF

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Development of Map-Based Engine Control Logic for DME Fuel (MAP 기반 DME용 엔진 제어로직 개발)

  • Park, Young-Kug;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3127-3134
    • /
    • 2013
  • This paper presents the verified results from the examination of the control algorithm, logic composition, and vehicle condition of the engine that has been adapted for DME fuel. It introduces the development process of the control structure and the logic control based on control map and auto-code generation, and finally verifies the reliability and performance of the overall control. The control structure largely consists of the injection control part that implements driver demand into an engine net torque and the air control system part that satisfies characteristics of exhaust gas and power performance. The control logic is designed with feedforward and feedback control for each of its control functions for an enhanced response. Moreover, the control map of the feedforward controller is created by the use of an engine model created by test data of mass product diesel engine, and it was subsequently calibrated in the test process of the engine and vehicle state. A test mode was completed by attaching the developed controller to the vehicle, and a reduction in gas emission is confirmed by the calibration of EGR, VGT, and injection times.

The GRS80 Gravimetric Geoid from GEM9 Potential Coefficients and Terrestrial Gravity Anomalies in the South Korea Region (GEM9 위성자료와 지상자료의 조합에 의한 남한지역의 GRS80 중력지오이드)

  • Cho, Kyu Jon;Lee, Young Jin;Cho, Bong Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.141-149
    • /
    • 1993
  • The gravimetric geoid of the South Korea Region was computed on Geodetic Reference System 1980(GRS80) using a combination of satellite-derived potential coefficients and terrestrial gravaty data. $10^{\prime}{\times}10^{\prime}$ mean gravity anomalies were obtained from surface gravity data for the outer zones, $1^{\circ}{\times}1^{\circ}$ equal area mean anomalies were used for the inner zones, and point gravity anomalies were used for the innermost zones in the Stokes integration. The GRS80 potential coefficients were obtained from modification of GEM9 data and Integration was extended over a spherical cap of $30^{\circ}$ from the integration area. The results of a free-air geoid show that the systematic mean difference of approximately 2~3m in comparison of OSU89B model.

  • PDF

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Process of Digital Elevation Model Using RC Helicopter Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 수치표고모형 작성)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • The study installed non metric camera which was a 10 Mega Pixel camera in RC Helicopter. And the study controlled images hotographed in air on land, considering their overlap. The study could express DEM by abstracting TIN from the acquired images through image registration. Also, the study compared and examined accuracy between reference point and check point observed by Total Station which was a conventional type of survey. As the results, the study could get errors of $-0.194{\sim}0.224\;m$ on X axis, $-0.088{\sim}0.180\;m$ on Y axis and $-0.286{\sim}0.285\;m$ on Z axis. Expressing an error's RMSE in the checkpoint, the study could get of 0.021388 m on X axis, 0.015285 m on Y axis and 0.041872 m on Z axis. It is judged that the above photographing and analyzing technique are better than the existing Total Station to acquire more terrain elevation data.

Design of Data Warehouse System for Reducing Defect Rate in Automotive Pulley Manufacturing Process (자동차 풀리 제조공정의 불량률 감소를 위한 데이터 웨어하우스 구조 설계)

  • Lee G.B.;Kim B.H.;Oh B.H.;Ju I.S.;Jang J.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.133-138
    • /
    • 2005
  • Automotive pulleys play a key role in driving the cooling pump, oil pump, air-conditioner and so on by using an engine power. Researches on design processes and technologies of the pulleys can be found in many literatures. On the other hand, the areas related to manufacturing processes of the pulleys have been treated negligently. Vast data extracted from various information systems are transformed, integrated, and summarized to become a special database for helping users make a decision. The database, namely the data warehouse has been popularly used in the marketing and customer management of enterprises and recently applied to improve the design and manufacturing processes. In this study the manufacturing process of pulleys were analyzed through the intensive investigation of shop-floors and the interviews with workers and managers. The defects generated during a manufacturing process were categorized in a few types and the causes of defects examined for extracting the dominant parameters in the setup process for producing pulleys. As the first step to construct the data warehouse for the manufacturing processes of pulleys, authors proposed its architecture focused on the reduction of defect rate during the setup process.

  • PDF