• Title/Summary/Keyword: Air source

Search Result 2,265, Processing Time 0.029 seconds

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Vulcanization Efficiency of Non-polar Rubber Compounds by Microwave (마이크로파를 이용한 비극성 고무컴파운드의 가황 효율)

  • Jung, U-Sun;Lee, Won-Ki;Lim, Kwon-Tack
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.228-231
    • /
    • 2011
  • The rate of vulcanization of nonpolar ethylene-propylene-diene terpolymer(EPDM)/carbon black compounds was investigated by using hot air and microwave as a heating source. The present study parameters such as heating source, sample thickness, and loading of an additive. The compound thickness was the main factor in the hot air vulcanization. It was due to the poor thermal conductivity of EPDM; that is, the thicker thickness, the lower vulcanization rate. For 100% vulcanization, the compound with 3 mm thickness required 7 min at $250^{\circ}C$ in the hot air system. However, the vulcanization of EPDM compounds by microwave system was not affected by the thickness while strongly dependent on the amount of a polar additive, carbon black. A compound with 80 phr of carbon black was perfectly vulcanized within 30 sec. These results suggest that the use of microwave as a heating source is an effective method for the vulcanization of compounds including a polar component.

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Review on the Use of Solar Energy for Grain Drying (태양열을 이용한 곡물건조에 관한 연구)

  • 금동혁;고학균;최재갑
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.64-76
    • /
    • 1978
  • A dimensional supply of petroleum fuels and increased competition for petroleum products has made the conservation of energy in grain drying an important cost and management factor. Research on solar grain drying is directed toward utilization of a renewable energy source as an alternative to petroleum fuels for drying. There are many technical and economic problems in accepting and adopting solor energy as a new energy source for grain drying. The purpose of this study are to assess the state of the art of solar grain drying and to find out the problems by reviewing literatures available. The results obtained may be summarized as follows; 1.It may be considered that the weather conditions in October of Korea was satisfactory for the forced natural air and solar heated air drying. 2. Solar energy is considered more applicable to low-temperature, In-storage drying systems than to high-temperature, high-speed drying systems. In-storage drying systems require low levels of heat input. The costs of collector systems to provide low temperature are considerably cheaper than for high-temperature systems. 3. Tubular type collector made of polyvinyle film seems to be the most practical at this stage of development and black-painted bare-plate collectors mounted on the outside of a typical, round, low-temperature drying bin can supply an appreciable amount of the energy efficiently needed for low-temperature grain drying at a lower cost. 4. All of the grains in solar drying tests was successfully dried up to safe storaged moisture levels without significant spoilage. Drying rates with solar system were faster than natural air drying systems, and usually a little slower than similar low-temperature electric drying systems. 5. Final grain moisture levels were lower in solar tests than in natural air tests, and generally higher than in tests with continuous heated air. 6. Savings of energy by use of solar collectors ranged from 23% to 55%, compared to the natural and electric ileated air drying systems. However, total drying cost effectiteness tvas not significant. Therefore, it is desirable that solar grain dry-ing sIFstems tvhich could be suitable for multiple heating purposes on farms shouldbe developed. 7. Supplemental heat with solar radiation did little to reduce air flow requirementsbut refuced drying time and increased the p\ulcornerobability of successful drying duringdrying poriod.

  • PDF

Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique (FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증)

  • Lee, Sang-Gab;Lee, Jae-Seok;Park, Ji-Hoon;Jung, Tae-Young;Lee, Hwan-Soo;Park, Kyung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study (발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구)

  • Yang Won-Ho;Byeon Jae-Cheol;Kim Young-Hee;Kim Dae-Won;Son Bu-Soon;Lee Jung-Eun
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.