• Title/Summary/Keyword: Air insulation

Search Result 649, Processing Time 0.027 seconds

Analysis of AC Breakdown Voltage of Composite Insulation for Dry-Air/Epoxy (건조공기/에폭시 복합절연물의 AC 파괴전압 분석)

  • Heo, Jun;Lee, Seung-Su;Lim, Kee-Joe;Jung, Hae-Eun;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.289-290
    • /
    • 2008
  • The purpose of this paper is to analyze AC Breakdown of solid/air composite insulation depending on the thickness and the pressure of dry air for eco-friendly insulation. SF6 gas has been widely used in electric equipment as gas insulation because of high dielectric strength and arc extinguishing performance. However, because SF6 gas is one of the green house effect gases, alternative insulation such as SF6 mixture, extremely low temperature gas, vacuum, liquid and solid insulating are being investigated.

  • PDF

The Flashover Characteristics of Test Electrodes against Clearance of Air Insulation for 765kV Transmission Line (765kV급 송전선로 공기절연거리 설정을 위한 시험전극의 섬락전압 특성)

  • Kim, Y.T.;Kim, Y.B.;Lee, H.H.;Kim, J.M.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1337-1340
    • /
    • 1995
  • For the purpose of rational design of air insulation, it is need to experiment with similar to real shape test object and conform the characterisics. But basic distances of air insulation of transmission line, tower, etc. can be acquired from flashover characteristic of rod-rod, rod-plane electrodes. In this paper, before field test of 765kV transmission line for determination of distances of phase to ground insulation, we execute lightning, switching impulse test with test electrod(rod-rod, rod-plane) against clearances of air insulation. Each tests use up-down method and consist of 30 times flashover test. Flashover data treatment program and air correction program following IEC 60-1(1987) standard were completely builted.

  • PDF

A Measurement Study of a Dynamic Insulator Thermal Performance (동적 단열재의 열성능 측정에 관한 연구)

  • Ko, Seon-Mi;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

Breakdown Characteristics of Dry Air under 170[kV] GIB (170[kV] GIB 내에서 건조공기(Dry Air)의 절연파괴 특성)

  • Han, Ki-Son;Yoon, Jin-Yul;Ju, Hyung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.136-142
    • /
    • 2010
  • In this paper, we changed $SF_6$ insulation gases used already in the GIB(Gas Insulated Bus, gas insulated busbar) of switching appliances of power grid 170[kV] GIS(Gas Insulated Switchgear, Gas Insulated Switchgear) with green insulation dry air gases and studied dielectric breakdown voltage characteristics by the AC voltage withstand test. Withstand test AC voltage applied to the standard KEPCO's 170[kV] GIB with dry air insulation and and the equivalent of dry air and $SF_6$ gas were examined. Breakdown voltage of dry air, using an expression of the experiments were calculated and AC Withstand criterion of dry air insulation for the AC voltage test was derived. Using the criterion, dry air gases can be used instead of the $SF_6$ gas was confirmed in the factory acceptance test at 170[kV] GIB.

Insulation Characteristics of Dry-air Insulated Switchgear for 72.5 kV Wind Power Generation (72.5 kV 풍력 발전용 Dry-air Switchgear의 절연 특성)

  • Chan-Hee Yang;Jin-Seok Oh;Hee-Tae Park;Young-il Kim
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.5-9
    • /
    • 2024
  • This paper describes the insulation breakdown characteristics of 72.5 kV dry-air insulated switchgear under development for installation in a wind power generator when a lightning impulse voltage is applied. For this study, the weak point of insulation due to the electric field concentration of the switchgear's internal shape was identified by finite element method (FEM) analysis, and the shape was actually simulated to measure and analyze the polarity of the lightning impulse voltage and the insulation breakdown characteristics according to the gas pressure at dry-air pressures of 0.1 Mpa to 0.45 Mpa. This study derives the maximum electric field with a 50 % discharge probability for each switchgear internal insulation vulnerable point based on the actual test and electrical simulation, which will be useful as reference data for supplementing and changing insulation design in the future.

Thermal Characteristics with Various Thermal Insulation Types in Basement Structures (지하층 구조체의 단열재 설치방법에 따른 열전달 특성)

  • 이재윤;조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.918-927
    • /
    • 2003
  • This study is to analyze thermal characteristics of the basement structures with a non-thermal insulation and various thermal insulations. From the results through the field experiments and computer simulations, the thermal bridges and heat loss is found in non-insulation structure of the basement under the definite depth of ground level. Therefore, the thermal insulation structure should be installed for preventing the heat loss in the basement.

Development and Evaluation of Air Force Mechanic Parka to Enhance the Functions and Insulation (기능성과 보온성 향상을 위한 공군 정비파카 개발 및 평가)

  • Lee, Sung-Ji;Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.294-303
    • /
    • 2012
  • This study was designed to develop air force mechanic parka, evaluate it, and ultimately provide functionally superior parka to the air force. The development process was 1) conducting a survey, 2) identifying problems and shortcomings of currently-supplied parkas, and 3) improving the design, pattern and materials. The newly-developed parkas were evaluated in terms of their ease of fit, clothing mobility, and insulation. Ease of fit was evaluated by subjects' sensory tests, and clothing mobility was by fitness-for-motion tests and range-of-motion tests using a Goniometer. Evaluation on insulation was conducted by thermal manikins. Findings of this study were as follows: 1. In the subjective evaluation on clothing mobility, new parkas were considered to have sufficient ease of fit while previous ones scored much lower, confirming the improvement of the new version. 2. Both subjective tests and ROM measurements on fitness for motion verified the superiority of the new parkas. 3. Insulation tests found that although insulation capability of newly-developed parkas was at a similar level to those of the previous ones, their insulation capability per unit weight was superior, demonstrating that new parkas were better at blocking heat conduction. When making changes in parka patterns and designs to enhance the mobility, it was necessary to maintain the insulation function. The new parkas developed by this study was verified to be superior to the previous ones in their insulation and clothing mobility.

AC Breakdown Analysis of Composite-Insulation by the Thickness of epoxy and the Variation of Pressure (복합절연물내 기체의 압력 및 고체의 두께변화가 AC 절연파괴에 미치는 영향 분석)

  • Jung, Hae-Eun;Kim, Byoung-Chul;Yun, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.194-195
    • /
    • 2007
  • $SF_6$ gas used widely as insulating component in electric power industry has excellent in insulation and arc extinguishing performance in gas-insulated switchgear. However, the concern about eco-friendly alternative gas is currently rising because $SF_6$ gas is one of the main greenhouse gases. In this paper, dry-air and composite-insulation (dry-air+epoxy) as the alternative technology for $SF_6$ gas insulation is studied. Under the gas pressure ranged from 0.1 to 0.6MPa, the breakdown voltage of dry-air were measured in AC electric field. The data of composite-insulation were acquired by changing the thickness of epoxy used in each composite-insulation under the same condition.

  • PDF

The Comparisons of the Surface Flashover Characteristics at $SF_6$ and the various insulation media. ($SF_6$와 이종절연재의 연면방전 특성 비교)

  • Lee, Jung-Hwan;Park, He-Rie;Park, Sung-Gyu;Choi, Young-Kil;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1400_1401
    • /
    • 2009
  • In this paper describes the comparisons of the surface flashover characteristics according to the change of the insulation media by experimental GIS(Gas Insulated Switchgear) chamber in accordance with change of pressure(P) and electrode distance(d). The using insulation medias are $SF_6$, Dry-Air, I-Air(Imitation Air, $N_2$ : $O_2$ = 79[%] : 21[%]), $N_2:O_2$ mixture gas and pure $N_2$. In this study, in order to compare the properties $SF_6$ and order insulation gas, we investigated the properties of the various insulation media with a knife to knife electrode under ac high voltage application. The gas pressure was changed from 1 to 5[atm]. as a result, it was found that dielectric strength is $SF_6$ > I-Air > Dry-Air and the best environmental preservation gas is Dry-Air.

  • PDF

A Sensitivity Analysis of Design Factors of Air-Conditioning System with Slab Thermal Storage (슬래브축열 시스템 설계인자의 감도해석)

  • Jung, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.590-595
    • /
    • 2008
  • In this paper, the sensitivity analysis was examined about the main factors that compose an air-conditioning system with slab thermal storage by using the analytic solution. Those factors are the insulation performance of floor slab surface, the slab thickness, the heat capacity of floor slab, the air change rate, and the insulation performance of the wall. The slab thickness and heat capacity of floor slab that minimize heating loads was gained by sensitivity analysis. It is became clear that the insulation performance of slab surface, high airtightness and high heat insulation are important design factors in air conditioning system with slab thermal storage.

  • PDF