• 제목/요약/키워드: Air content, Slump

검색결과 249건 처리시간 0.018초

An Experimental Study on the Properties of Concrete using High Volume of Coal Ash

  • Kim, Moo Han;Choi, Se Jin
    • Architectural research
    • /
    • 제4권1호
    • /
    • pp.39-44
    • /
    • 2002
  • Recently, the coal-ash production has been increased by increase of consumption of electric power. So it is important to secure a reclaimed land from pollution and develop practical application of coal ash. This is an experimental study to compare and analyze the properties of concrete using high volume of coal ash (including fly ash and bottom ash) as a part of fine aggregate. For this purpose, the mix proportions of concrete according to replacement ratio of coal ash (10, 20, 35, 50%) were selected. And then air content, slump, setting time, bleeding content, chloride content, compressive strength and carbonation test were performed. According to test results, it was found that the bleeding content of concrete using the coal ash decreased according to increase of replacement ratio. And the chloride content of concrete using the bottom ash as a part of fine aggregate increased as the replacement ratio of bottom ash increased, but it is satisfied with the total chloride content of concrete recommended by KCI - $0.3kg/m^3$ below. Also, the compressive strength of concrete using the bottom ash was similar to that of plain concrete(BA 0) after 28days of curing and the carbonation depth of concrete increased as the replacement ratio increased. However, the carbonation depth of concrete using the fly ash decreased as the replacement ratio of fly ash increased.

減水劑가 콘크리트에 미치는 影響 (Effects of the Water Reducing Agent on the Concrete)

  • 김종천;도덕현
    • 한국농공학회지
    • /
    • 제24권2호
    • /
    • pp.67-75
    • /
    • 1982
  • A study on the effect of water reducing agent on the various characteristics of concrete has been conducted. The experimental results of the study are summarized as follows. 1. Slump test for the concrete added water reducing setretarding agent in proper quantity have been conducted. According to the test results, the decreasing rate of slump value become bigger than plain concrete with increase of the unit weight of cement and elapse of time 2. In case the proper quantity content of maximum compressive strength in Fig. 5 of water reducing set retarding agent is added, unit weight of water is decreased about 15% or so as compared with plain concrete. with the increase of water reducing set accelerating agent content unit weight of water is decreased much more, And other hand, amount of air entraining shows the increasing tendency with the increase of water reducing agent content. 3. The adding rate of water reducing agent which produce maximum strength shows that WR-CH and WR-SA which is water reducing set-starding agent is 0.2% and WR-CO is 0.5% and that WS-PO which is water reducing set accelerating agent is 0.5 4. compressive strength jof the concrete made of sulfate resistant cement shows less than the strength of normal portland cement at initial strength but the strength of both cement shows almost same at curing age of 28 days. 5. when proper quantity of water reducing set retarding agent is used, boned strength is increased about 15% at curing age of 28days. 6. According to the result of durability test, dynamic young's mudulus of elasticity at plain concrete is decreased about 50% as compared with initial step at 300 cycle of freezing and thawing after curing age of days. on the contarary the concrete used water reducing agent is decreased less than 7%.

  • PDF

고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구 (Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure)

  • 조현명;김승원;송지현;박희문;박철우
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

건조수축 저감형 유동화제를 사용한 콘크리트의 물리적 특성에 관한 연구 (A Study on the Physical Properties of Concrete Using Drying Shrinkage-Reducing Superplasticizer)

  • 신재경;오치현;최진만;이성연;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.215-218
    • /
    • 2005
  • This paper intended to evaluate the applicability of drying shrinkage reducing superplasticizer (DSRA) by investigating physical properties of concrete using DSRA, The application of flowing concrete method exhibited a less loss of slump and air content with time than those of conventional concrete and had small bleeding. Flowing concrete had larger compressive strength than base and conventional concrete by as much as $3\~5\%$. It also had less drying shrinkage by as much as $20\%$ compared with conventional concrete. This is due to the coupled effect of reduced water content and aqueous type expansive admixture. On the other hand, neutralization depth of flowing concrete showed greater than conventional concrete.

  • PDF

고강도 콘크리트용 혼화제의 품질성능에 관한 실험적 연구 - 고성능 감수제를 중심으로- (An Experimental Study on the Quality Performance of Chemical Admixtures for High Strength Concrete - Focussed High Range Water Reducer -)

  • 권영호;이보근;박정국;박칠림
    • 콘크리트학회지
    • /
    • 제5권1호
    • /
    • pp.165-173
    • /
    • 1993
  • 본 연구는 고강도 콘크리트 실용화의 일환으로 국내에서 시판되고 있는 고성능 감수제의 품질성능을 평가하기 위한 것이다. 이러한 연구를 위하여 8종류의 고성능 감수제를 대상으로 첨가량에 따른 특성을 비교하였다. 또한 경시변화에 따른 특성을 비교, 분석하기 위하여 슬럼프, 공기량 그리고 압축강도비를 측정하였다. 이 때 고성능 감수제의 품질성능 평가 규준는 JASS 5T-402 규준에 따라 실시하였다. 실험결과 국내에서 시판되는 고성능 감수제는 공기량, 앞축강도비에 대해서는 모두 만족하였지만 슬럼프 경시 저하량은 DA를 제외한 모든 고성능 감수제가 규준치를 초과하였다. 따라서 현장에서 고강도콘크리트를 생산할 경우 배합방법이나 첨가방법을 개선하여 시공성을 확보하는 방안이 필요할 것이다.

고강도 콘크리트의 현장최적배합에 관한 연구 (The Study on the Optimum Mix Design of the High-Strength Concrete in Site)

  • 이상수;원철;김동석;안재현;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.232-238
    • /
    • 1996
  • In this paper, the properties of high-strength concrete are described with respect to materials and mix conditions(water-cement ratio, chemical admixture, replacement of fly ash). As primary purposes of this study, the optimum mix design method of high-strength concrete to decrease unit cement contents is investigated, and the properties of fresh and hardened concretes are tested in terms of slump, air content and compressive strength. As results of this study, workability and strength development of the high-strength concrete depend on the water-cement ratio, replacement ratio of fly ash and dosage of the chemical admixture. The conditions which are proposed optimum mix design of the high-strength concrete show W/C 37%, S/A 42~45% and unit cement content 470~480kg/$\textrm{m}^3$. Based on the results, the applicability of high-strength concrete in site is clearly proved.

  • PDF

건조수축 저감형 유동화제의 개발에 관한 연구 (A Study on the Development of Drying Shrinkage-Reducing Superplasticizer)

  • 신재경;오치현;최진만;이성연;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.501-504
    • /
    • 2005
  • This paper discusses the development of drying shrinkage reducing type superplasticizer(DSRS) by varying dosage of polycarboxylic based superplasticizer, liquid type expansive admixture and antifoaming agent. Adequate mixture proportion of each admixture is fixed at 0.3$\%$ of superplasticizer, 0.15$\%$ of liquidtype expansive admixture and 0.0005$\%$ of antifoaming agent to insure the improvement in drying shrinkage as well as comparable to the slump and air content of conventional concrete. With this mixture proportion, compressive strength of concrete using DSRS is comparable to that of conventional concrete. The use of DSRS studied by the authors has a favorable effect on reducing drying shrinkage due to the effect of water content and expansion by expansive admixture.

  • PDF

건식 바텀애시 굵은골재를 사용한 경량골재 콘크리트의 공학적 특성 (Engineering Properties of Lightweight Aggregate Concrete Using Dry Bottom Ash as Coarse Aggregate)

  • 성종현;선정수;최선미;복영재;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2013
  • Bottom ash, which is discharged through a wet process in a thermal power plant, contains much unburned coal due to quenching and much salt due to seawater. However, dry bottom ash discharged through a dry process contains low unburned coal and salt, and has light -weight due to many pores. Therefore, it is expected that it can be used as lightweight aggregate. This study deals with the basic properties of concrete used dry bottom ash as coarse aggregate. As a results, the concrete having high content of dry bottom ash aggregate showed high slump by using water reducing agent and its air content was within 5±1.5% as designed value, similarly to normal weight concrete. It also showed a lower compressive strength than 100% of crushed stone.

  • PDF

초고층 주상복합구조물에 적용한 고강도 콘크리트의 배합설계 및 품질관리 시스템에 관한 연구 (A Study On the Mix Design and Quality Control System of High Strength Concrete for the Construct ion of High Rise Complex Structure)

  • 김선구;이상수;원철;박상준;김동석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.40-45
    • /
    • 2001
  • The purposes of this study were mix design and quality control of high strength concrete for the construction of high rise complex structure. Desired performances of this high strength concrete were slump flow 50$\pm$10cm, air content 4.5$\pm$1.5% and design strength 400kgf/$cm^2$. Experimental flow was that optimal mix design was selected in the indoor experiment and after that, producing test was done in the batcher plant. Excel lent results of experiment was obtained from binder content 475kg/$m^2$ with replacement ratio 10% of fly ash. The results of field application of high strength concrete was sufficiently satisfied both flowability and compressive strength.

  • PDF

PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향 (Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete)

  • 안태호;박준희;소광호
    • 한국결정성장학회지
    • /
    • 제27권4호
    • /
    • pp.173-177
    • /
    • 2017
  • PNS 감수제와 시멘트 페이스트의 유동성의 관계를 평가하기 위해 물시멘트비 35 %에 PNS의 감수제 첨가하여 세 가지 시멘트에 대해 평가하였다. 세 가지 시멘트의 화학적 성질은 XRD, XRF로 평가하고, 물시멘트비 33 %인 콘크리트에 대한 $Na_2SO_4$의 첨가 효과는 압축강도, 슬럼프, 공기 함량의 측정에 의해 평가하였다. 실험 결과는 시멘트 A 및 C에 황산나트륨 2.6 %를 첨가하면 슬럼프 손실이 개선됨을 보여 주었으며, 시멘트 E의 경우 황산나트륨 1.3 % 첨가가 효과적이었다.