• 제목/요약/키워드: Air change rate

검색결과 765건 처리시간 0.028초

새집증후군 현상 및 유해가스 제거방안 연구 (Research on the phenomenon of sick house syndrome and how to remove harmful gases)

  • 최유화
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.449-456
    • /
    • 2020
  • 새 집으로 이사를 가거나 집, 사무실 등의 벽지나 바닥재를 바꿨을 때, 인테리어 공사를 한 뒤에 나타날 수 있는 코를 찌르는 매캐한 냄새와 눈이 따가워지는 등의 현상이 새집증후군으로 새집을 장만한 기쁨을 누리는 것도 잠시 뿐이다. 새 건축물이나 새 가구에 사용되는 건축자재, 접착제, 벽지, 페인트 등에서 나오는 휘발성 유기화합물들은 거주자들의 건강과 실내 생활의 불쾌감을 유발시킨다. 이 휘발성 유기화합물들은 대표적 물질인 포름알데히드를 비롯하여 벤젠, 톨루엔, 아세톤, 스틸렌 등이 포함되어 있고 이러한 물질들은 장시간에 걸쳐 서서히 방출되어 거주자들에게 급성 또는 만성적인 질환을 야기한다. 유기 휘발성 물질들의 제거 방법으로는 흡착을 이용한 물리적 방법과 휘발성 물질을 다른 물질로 전환시키는 화학적 방법 또는 두 가지가 혼합된 방법이 주로 사용된다. 본 논고에서는 반응물질의 반응속도와 생성물의 방출을 제어하는 방법으로 얻어지는 서방형의 이산화염소 젤팩과 최적화된 홀 경을 가진 제올라이트 흡착제를 혼용하여 공기 중에 부유하는 포름알데히드를 흡착, 분해시켜 제거하는 효과적인 방법에 대하여 제안하는 바이다.

재생페트를 이용한 고단열 패키징 개발과 기존의 스티로폼 및 종이 박스와의 단열성능 비교 (Development of High-insulation Packaging using Recycled PET and Comparison of Insulation Performance with Existing Styrofoam and Paper Boxes)

  • 류재룡;육세원;갈승훈;신양재
    • 한국포장학회지
    • /
    • 제25권3호
    • /
    • pp.111-116
    • /
    • 2019
  • Thermal insulation performance of new insulation packaging made of recycled PET nonwoven (thickness : 10 mm) was verified by conducting comparative experiment with an EPS box (thickness : 25 mm) and a double wall corrugated box (thickness : 7 mm). Three ice packs (300 g) were positioned 200 mm above the bottom inside each box, all of which are placed side by side and temperature change of 2 points (5mm under middle icepack and 130 mm under middle icepack) was recorded by data logger (GL-840, Graphtec) for 16 hours under the environment of 29℃. The new packaging box showed 75% higher insulation performance than the EPS box and 180% higher than the corrugated box. In order to figure out the reason for insulation performance difference among boxes, thermal conductivities of each box material were measured using heat flow meter (HFM436 lamda, Netzsch). U-value (thermal conductivity divided by thickness) of EPS was lower than recycled pet nonwoven by 57%, which seemed to be opposite to the result of insulation test of boxes. This was explained by high water vapor transmission rate of EPS (6 times higher than PET insulation) and air pocket effect of PET insulation.

Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제34권4호
    • /
    • pp.411-423
    • /
    • 2011
  • This study was conducted to quantify soil $CO_2$ efflux using the continuous measurement method and to examine the applicability of an automatic continuous measurement system in a Korean deciduous broad-leaved forest. Soil respiration rate (Rs) was assessed through continuous measurements during the 2004-2005 full growing seasons using an automatic opening/closing chamber system in sections of a Gwangneung temperate deciduous forest, Korea. The study site was an old-growth natural mixed deciduous forest approximately 80 years old. For each full growth season, the annual Rs, which had a gap that was filled with data using an exponential function derived from soil temperature (Ts) at 5-cm depth, and Rs values collected in each season were 2,738.1 g $CO_2$ $m^{-2}y^{-1}$ in 2004 and 3,355.1 g $CO_2$ $m^{-2}y^{-1}$ in 2005. However, the diurnal variation in Rs showed stronger correlations with Ts (r = 0.91, P < 0.001 in 2004, r = 0.87, P < 0.001 in 2005) and air temperature (Ta) (r = 0.84, P < 0.001 in 2004, r = 0.79, P < 0.001 in 2005) than with deep Ts during the spring season. However, the temperature functions derived from the Ts at various depths of 0, -2, -5, -10, and -20 cm revealed that the correlation coefficient decreased with increasing soil depth in the spring season, whereas it increased in the summer. Rs showed a weak correlation with precipitation (r = 0.25, P < 0.01) and soil water content (r = 0.28, P < 0.05). Additionally, the diurnal change in Rs revealed a higher correlation with Ta than that of Ts. The $Q_{10}$ values from spring to winter were calculated from each season's dataset and were 3.2, 1.5, 7.4, and 2.7 in 2004 and 6.0, 3.1, 3.0, and 2.6 in 2005; thus, showing high fluctuation within each season. The applicability of an automatic continuous system was demonstrated for collecting a high resolution soil $CO_2$ efflux dataset under various environmental conditions.

대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성 (Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx)

  • 조서희;이기만
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.8-16
    • /
    • 2019
  • 저공해 연소를 위한 방법 중 하나인 배기가스 재순환(flue gas recirculation, 이하 FGR)은 질소산화물 저감에 효과적인 연소 기법이다. 이를 메탄/공기 대향류 예혼합화염에 적용하여 화염의 특성변화와 NOx 생성 기구를 파악하기 위한 수치해석을 진행하였다. 신장률에 따라 배출되는 생성물들의 몰분율이 달라진다는 점을 고려하여 재순환율은 생성물을 기준으로 정의되었으며, 실제 연소 시스템을 반영하기 위해 주요 생성물인 CO2, H2O, O2 그리고 N2를 희석제로써 재순환하였다. FGR 기법이 적용됨에 따라 특정한 신장률 조건에서 최대화염 온도의 전환점이 발견되었다. 또한, 재순환율이 증가함에 따라 온도와 NO의 경향이 달리 나타났으며, 이를 파악하고자 NO 반응을 열적 NO와 Fenimore NO로 구분하여 분석하였다.

에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II) (A Numerical Study on Various Energy and Environmental System (II))

  • 장동순;박병수;김복순;이은주;송우영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

STS 316L 소결체의 부식 저항 특성에 미치는 금속산화물 첨가의 영향 (The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel)

  • 이종필;홍지현;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-277
    • /
    • 2015
  • As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$ and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above $800^{\circ}C$ at the various oxides ($SiO_2$, $Al_2O_3$, MgO and $Y_2O_3$) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at $1000^{\circ}C$ and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at $900^{\circ}C$ and $1000^{\circ}C$, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using $Y_2O_3$. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at $Y_2O_3$ added sintered stainless steel.

성대마비와 성대구증의 강도 변화에 따른 최대발성지속시간 비교 (Comparison of Maximum Phonation Time Associated with the Changes in Vocal Intensity in Patients with Unilateral Vocal Fold Palsy and Sulcus Vocalis)

  • 최세진;최홍식;김재옥;최예린
    • 말소리와 음성과학
    • /
    • 제4권1호
    • /
    • pp.125-131
    • /
    • 2012
  • The patients with incomplete glottic closure have an important feature decreasing the maximum phonation time (MPT) because airflow rate or air leakage is greater than people without voice disorders. Also they can appear a problem in the intensity regulation. This study analyzed MPT difference based on the comfortable intensity and louder intensity and the correlation between MPT and respiration volume of unilateral vocal fold palsy (UVFP) and sulcus vocalis (SV) group. The twenty with UVFP, the 21 with SV, the 21 normal subjects measured MPT in /a/ vowel prolongation task with comfortable intensity and louder intensity and compared analysis by measuring FVC, $FEV_1$, $FEV_1/FVC$ to analyze the correlation between MPT and respiration volume. First, a comparison of MPT according to the intensity between groups is that MPT of the normal group was statistically significant long compared to the patient group in comfortable intensity, but MPT between groups was not statistically significant difference in the louder intensity. Second, an analysis of the correlation between MPT and respiration volume is that this was statistically significant correlation between MPT in comfortable intensity and MPT in louder intensity. But this did not show statistically significant correlation between intensity and respiration volume. This study can be supported the preceding study results deduced that shorting MPT of the patient group compared to the normal group was originated in the problem of laryngeal valving mechanism at the level of vocal folds rather than a problem of respiratory function. Also at the phonation by varying the intensity, the result can deduce that in the case of patient group, the length of MPT had been improved by increasing the glottal closure ratio in the louder intensity. These results can support the theoretical basis that should be applied to the clinicians by varying the intensity at the voice evaluation and voice therapy for the patients with the glottis incompetence.

A Simple Method for Measuring the Immobilization Solids of Coating Colors Using an AA-CWR Water Retention Meter

  • Park, Chang-hak;Lee, Do-Ik;Margaret K. Joyce
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.39-48
    • /
    • 2002
  • The water retention of coating colors can be accurately measured by devices such as an AA-GWR water retention meter whose principle of measurement Is based on pressure filtration of coatings under an externally applied air pressure over a certain period of time. It was hypothesized that such devices could be also used to determine the immobilization solids (IMS) of coating colors by determining a sudden drop in the rate of dewatering, that is, a sudden change in the drainage curves. To test this hypothesis, the immobilization solids of coating colors containing various thickeners and water retention additives at different levels were first accurately measured by a modified immobilization tester based on the well-known gloss drop method, and then their values were compared with those obtained by an AA-GWR water retention tester. They agreed very well and showed that the standard deviation is only 0.14% in the IMS points between both methods. This good agreement was not surprising because both test methods are based on the same end-point, that is, the immobilization solids point at which menisci begin to form at the coating surface. Theoretical considerations supporting this new method for measuring the immobilization solids of coating colors are presented and some recommendations for the test method are discussed. Also, the effect of various thickeners and water retention additives on the properties and printability of coated papers is discussed.

추운 환경에서 보온용 장갑 착용이 고령 여성의 인체 생리 반응 및 주관적 감각에 미치는 효과 (Wearing Effects of Winter Gloves in Cold Environment on Physiological Responses and Subjective Perception in Elderly Females)

  • 박준희;이주영
    • 한국의류학회지
    • /
    • 제43권6호
    • /
    • pp.866-876
    • /
    • 2019
  • This study examined the physiological and psychological effects of wearing gloves at rest in a cold environment. Seven elderly females participated in two separate trials: wearing gloves (WG) and bare hands (BH). The experiment was conducted for 60 min in a climatic chamber (air temperature 7.8±0.3℃ with 44±2%RH) with a sedentary posture. Microclimate temperature on the left palm was 4.16℃ higher in WG compared to that in BH (p<.1). Microclimate temperature on the chest during the last 5 min increased compared to the initial 5 min only in WG (p<.05). During the last 5 min, skin temperatures at the arm and hand in WG were higher than those in BH (p<.05). There was no statistical difference in the change of rectal temperature between WG and BH. Heart rate in BH was significantly higher compared to the WG (p<.05). Subjects also felt less cold on the whole body and hand in WG than those in BH (p<.05). The findings indicate that wearing gloves for elderly females affected the distribution of skin temperature and cardiovascular response in cold environments. Elderly females should be informed about the importance of wearing gloves through the clothing guideline in winter.

고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향 (The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition)

  • 배진우;서주형;이재성;김호영
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.