DOI QR코드

DOI QR Code

The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel

STS 316L 소결체의 부식 저항 특성에 미치는 금속산화물 첨가의 영향

  • Lee, Jong-Pil (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Hong, Ji-Hyun (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Park, Dong-Kyu (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, and LINC, Gyeongsang National University)
  • 이종필 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 홍지현 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 박동규 (경상대학교 나노.신소재융합공학부 및 LINC 사업단) ;
  • 안인섭 (경상대학교 나노.신소재융합공학부 및 LINC 사업단)
  • Received : 2015.07.29
  • Accepted : 2015.08.26
  • Published : 2015.08.28

Abstract

As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$ and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above $800^{\circ}C$ at the various oxides ($SiO_2$, $Al_2O_3$, MgO and $Y_2O_3$) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at $1000^{\circ}C$ and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at $900^{\circ}C$ and $1000^{\circ}C$, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using $Y_2O_3$. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at $Y_2O_3$ added sintered stainless steel.

Keywords

References

  1. D. B. Lee: Korean J. Met Mater., 49 (2010) 153 (Korean).
  2. Y. Y. Lee, Y. H. Kim and Y. D. Lee: Korean J. Met Mater., 32 (1994) 123 (Korean).
  3. A. Ferriere, C. Sanchez Bautista, G. P. Rodriguez and A. J. Vazquez: Solar Energy., 80 (2006) 1338-1343. https://doi.org/10.1016/j.solener.2005.06.009
  4. A. Bautista, G. Blanco, F. Velasco, A. Gutierrez, L. Soriano, F. J. Palomares and H. Takenouti: Corrosion Science., 51 (2009) 785-792. https://doi.org/10.1016/j.corsci.2009.01.012
  5. H. S. Kim: J. Korean Powder Metall. Inst., 20 (2103) 432 (Korean). https://doi.org/10.4150/KPMI.2013.20.6.432
  6. A. Tiziani, A. Molinari, L. Fedrizzi, A. Tomasi and P. L. Bronora: Corros. Sci., 45 (1990) 672.
  7. A. Bautista, F. Velasco, M. Campos, M. E. Rabanal and J. M.Torralba: Oxidation of Metals., 45 (2003) 1343-1354.
  8. C.-Y. Son, C. K. Kim, D. J. Ha, S. Lee, J. S. Lee, K. T. Kim and Y. D. Lee: Metall. Mater. Trans. A., 38 (2007) 2776-2787. https://doi.org/10.1007/s11661-007-9312-5
  9. A. V. C. Sobral, M. P. Hierro, F. J. Pérez, W. Ristow Jr. and C. V. Franco: Mater. Corros., 51 (2000) 791. https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  10. I. S. Kim and C. Y. Kang: J. Kor. Inst. Met & Mater., 41 (2003) 12 (Korean).
  11. M. F. Pills and E. G. Araujo: Meterials Research., 9 (2006) 375-379. https://doi.org/10.1590/S1516-14392006000400006
  12. A. Bautista, F. Velasco and J. Abenojar: Corros. Sci., 45 (2002) 1343.
  13. J. Botella, C. Merino and E. Otero: Oxid. Met., 49 (1998) 297. https://doi.org/10.1023/A:1018830424480
  14. F. J. Perez, M. J. Cristobal, G. Arnau, M. P Hierro and J. J Saura: Oxid. Met., 55 (2001) 165. https://doi.org/10.1023/A:1010337530502