• Title/Summary/Keyword: Air Quality Monitoring Stations

Search Result 95, Processing Time 0.024 seconds

A Study on Indoor Air Quality Monitoring System for Subway Stations (지하역사의 공기질 감시 시스템 구성에 관한 연구)

  • Lee, Byung-Seok;Hwang, Sun-Ju;Lee, Joon-Hwa;Kim, Gyu-Sik;Kim, Jo-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.48-50
    • /
    • 2009
  • This paper presents an IAQ(Indoor Air Quality) Monitoring System using equipments for measurement of fine Particle($PM1{\sim}PM10$), $CO_2$, VOCs(Volatile Organic Compounds), temperature and humidity for IAQ monitoring of subway station which millions of people use a day. The necessity of IAQ monitoring system is getting increased for more effective subway station monitoring in line with the recent government's regulation for IAQ is reinforcing. Subway Station is an unusual case. The structure of subway station is closed and complicated. Therefore when data of equipments are transferred, transmission error can happen occasionally. To prevent transmission error, an IAQ Monitoring System is needed the appropriate position and selection of equipments or sensor module. In addition IT(Information Technology) can be utilized like "WiBro(Wireless Broadband)" and "GateWay" for facilitate movement of data and construction of IAQ monitoring system of subway station.

  • PDF

Implementation of Indoor Air Quality Monitoring System for Subway Stations (지하철 역사 공기질 모니터링 시스템의 구현)

  • Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.294-301
    • /
    • 2013
  • The particle matter concentrations in the subway stations should be monitored and controlled for the health of commuters on the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. In this paper, the reliability of the cheap instruments using light scattering method is improved with the help of a linear regression analysis technique to measure the $PM_{10}$ concentrations continuously in the subway stations. In addition, a monitoring system is implemented to display and record the data of $PM_{10}$, $CO_2$, humidity, and temperature. To transmit and receive these measured sensor data, CDMA M2M wireless communication method is applied.

The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume (지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략)

  • Jae Young Lee;Ye Jin Kim;Mi Ju Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

Temporal distribution, influencing factors and pollution sources of urban ambient air quality in Nanchong, China

  • Zhou, Hong;Li, Youping;Liu, Huifang;Fan, Zhongyu;Xia, Jie;Chen, Shanli;Zheng, Yuxiang;Chen, Xiaocui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.260-267
    • /
    • 2015
  • The $PM_{10}$, $SO_2$ and $NO_2$ mass concentrations were obtained over five years from monitoring stations across Nanchong, a southwest city in China. Changes in urban air quality over time, as well as the factors influencing that change, were evaluated based on air pollutant concentrations, the Air Pollution Index (API), and the Comprehensive Pollution Index (P). The results showed that the total annual mean $PM_{10}$, $SO_2$ and $NO_2$ concentrations over the five years studied were $61.1{\pm}1.1$, $45.0{\pm}3.9$ and $34.9{\pm}4.9{\mu}g{\cdot}m^{-3}$, respectively. The annual mean concentrations displayed a generally decreasing trend; lower than the annual mean second-level air quality limit. Meanwhile, the annual mean API values were in a small range of 52-53, the air quality levels were grade II, and P values were 1.06-1.21 less than the slight level ($P{\leq}1.31$). Total monthly mean $PM_{10}$, $SO_2$, $NO_2$ concentrations, and API and P values were consistently higher in winter and spring than during autumn and summer. The results of a correlation analysis showed that temperature and pressure were the major meteorological factors influencing pollution levels. Pollution sources included industrial coal and straw burning, automobiles exhaust and road dust, fireworks, and dust storms.

Changes in the Air Quality of Port Areas Following the Implementation of the IMO 2020 Sulfur Limit (IMO 2020 황산화물 규제에 따른 항만지역 대기질 변화 특성)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.967-977
    • /
    • 2021
  • From January 1, 2020, the International Maritime Organization has implemented a global regulation, known as IMO 2020, to reduce the sulfur content in fuel oil of ships from 3.5% to 0.5%. In this study, we used data from air monitoring stations to evaluate the change in air quality at New Port and North Port in Korea areas after the regulation was implemented. The concentration of SO2 and NO2 was higher in the port areas than in the surrounding areas due to exhaust gas from ships and vehicles. However, the SO2 concentration decreased by more than 50% in the port area, demonstrating the efficiency and positive effect of the IMO 2020 sulfur limit.

Air Pollution Monitoring RF-Sensor System Trackable in Real Time (실시간 위치탐지 기능을 갖춘 대기오염 모니터링 RF-Sensor 시스템)

  • Kim, Jin-Young;Cho, Jang-Ho;Jeon, Il-Tae;Jung, Dal-Do;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Air pollution monitoring has attracted a lot of interests because it affects directly to the human life quality. The most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the specific area. Therefore, it is difficult to install them to as many places as people need. In this work, we constructed a low price and small size Radio Frequency(RF) sensor system to solve this problem. This system also had the measurement range similar to the ones used in the air pollution forecast systems. This system had the sensor unit to measure the air quality, the central processing unit for air quality data acquisition, the power unit to supply the power to every units, and the RF unit for the wireless transmission and reception of the data. This system was easy to install in the field. We also added a GPS unit to track the position of the RF-sensor in real time by wireless communication. For the various measurements of the air pollution, we used CO, $O_3$, $NO_2$ sensors as gas sensors and also installed a dust sensor.

Air Pollution History, Regulatory Changes, and Remedial Measures of the Current Regulatory Regimes in Korea (우리나라 대기오염 역사, 규제의 변천, 현행 규제제도의 개선방안)

  • Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.353-368
    • /
    • 2013
  • All Koreans had suffered heavily from municipal and industrial air pollution problems since 1960's to 1980's. However the levels of $SO_2$, CO, and Pb have been dramatically decreased since 1990's due to various air pollutants' reduction policies under the provisions of the 1978 Environmental Preservation Act and the 1990 Air Quality Preservation Act such as increasing the supply of low-sulfur fuel, the use of cleaner fuel, no use of solid fuel, and so on. Even though the national ambient air quality standard has been strengthened to protect public health and welfare, the levels of $NO_2$, $O_3$, and $PM_{10}$ frequently exceed the corresponding standards; for example, only 4 stations (1.7%) out of 239 nationwide monitoring stations satisfied the 24-hr based PM10 standard in 2011. Moreover, upto the present time, since there are serious underlying policies of economism and growth-first which can not be solely solved by the environmental laws, it is difficult to root out undesirable social evils such as public indifference, passive academic activities, complacent government bureaucracy, insufficient social responsibility of enterprise, and radical activities of environmental groups. The paper initially reviewed air pollution history of Korea with surveying various environmental factors affecting in/out-door air pollution in the past Korea. Further this study extensively investigated legal and political changes on air pollution control and management for the last 50 years, and then intensively discussed the present environment-related laws and policies unreasonably enforced in Korea. It is necessary to practically revise many outdated legal policies based on health-oriented thinking and on our current economic levels as well.

A Case Study on the Characteristics of TSP Concentrations and Yellow Sand Phenomena in Seoul (서울 부유분진 농도와 황사 특성에 관한 사례 연구)

  • 김우규;전영신;이원환;김현미
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.199-209
    • /
    • 1995
  • The variations of TSP concentrations observed at Air Quality Monitoring Stations(AQMSs) in Seoul were analysed from 1986 to 1993. And those of Yellow Sand period were investigated to find out the characteristics between normal and Yellow Sand period. The TSP concentrations have begun lower than 150.mu.g/m$^{3}$ annual mean concentration at Gwanghwamun, Hannam-dong, and south river region since 1989, and air quality in Seoul was improved in 1991, but polluted again in Hannam-dong, and Seongsu-dong in 1992. Yellow sand phenomena of 1990 and 1993 were selected for case study. During the whole period in 1990, the TSP concentrations were exceeded over 300.mu.g/m$^{3}$, which is the upper limit of 24 hour concentration, at the center of city such as Mapo, Gileum-dong, sinseol-dong. But in 1993, the TSP concentrations got lower than 24 hour concentration, and air quality was highly improved.

  • PDF

Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula (한반도 권역별 대기 중 입자상 탄소 특성 연구)

  • Lee, Yeong-jae;Park, Mi-kyung;Jung, Sun-a;Kim, Sun-jung;Jo, Mi-ra;Song, In-ho;Lyu, Young-sook;Lim, Yong-jae;Kim, Jung-hoon;Jung, Hae-jin;Lee, Sang-uk;Choi, Won-Jun;Ahn, Joon-young;Lee, Min-hee;Kang, Hyun-jung;Park, Seung-myeong;Seo, Seok-jun;Jung, Dong-hee;Hyun, Joo-kyeong;Park, Jong-sung;Hwang, Tae-kyung;Hong, You-deog;Hong, Ji-hyung;Shin, Hye-jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.330-344
    • /
    • 2015
  • Semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon were made for the period of January to October 2014, at six national air monitoring stations in Korea. OC and EC concentrations showed a clear seasonal variation with the highest in winter (January) and the lowest in summer (August). In winter, the high carbonaceous concentrations were likely influenced by increased fuel combustion from residential heating. OC and EC concentrations varied by monitoring stations with 5.9 and $1.7{\mu}g/m^3$ in Joongbu area, 4.2 and $1.2{\mu}g/m^3$ in Honam area, 4.0 and $1.3{\mu}g/m^3$ in Yeongnam area, 3.7 and $1.6{\mu}g/m^3$ in Seoul Metropolitan area, 3.0 and $0.8{\mu}g/m^3$ in Jeju Island, 2.9 and $0.7{\mu}g/m^3$ in Baengnyeong Island respectively. The concentrations of OC and EC comprised 9.6~ 15.5% and 2.4~ 4.7% of $PM_{2.5}$. Urban Joongbu area located adjacent to the intersection of several main roads showed the highest carbon concentration among six national air monitoring station. On the other hand, background Baengnyeong Island showed the lowest carbon concentration and the highest OC/EC ratio (4.5). During the haze episode, OC and EC were enhanced with increase in $PM_{2.5}$ about 1.3~ 3 and 1.3~ 4.0 times respectively. The concentrations of OC, EC in the Asian dust case are about 1~ 2.4 times greater than in the nondust case. The origins of air mass pathways arriving at Seoul, using the backward trajectory analysis, can be mostly classified into 6 groups (Sector I Northern Korea including the sea of Okhotsk, Sector II Northern China including Mongolia, Sector III Southern China, Sector IV South Pacific area, Sector V Japan, Sector VI Southern Korea area). When an air mass originating from northern China and Mongolia, the OC concentrations were the most elevated, with a higher OC/EC ratio (2.4~ 3.3), and accounting for 17% of $PM_{2.5}$ mass on average.

The Analysis of PM10 Concentration and the Evaluation of Influences by Meteorological Factors in Ambient Air of Daegu Area (대구지역 대기 중 미세먼지의 오염도 분석 및 기상인자에 따른 영향 평가)

  • Hwang, Yoon-Jung;Lee, Soon-Jin;Do, Hwa-Seok;Lee, Yun-Ki;Son, Tae-Jung;Kwon, Taek-Gyu;Han, Jung-Wook;Kang, Dong-Hun;Kim, Jong-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.459-471
    • /
    • 2009
  • Air Monitoring Network(11 urban stations) is operated to measure ambient air quality in Daegu city. The urban air monitoring stations include 6 in residence area, 3 in industrial area, 1 in commercial area, and 1 in green area. In this study, hourly data (2006. 1. 1~2008. 12. 31) of $PM_{10}$ were measured at 11 urban air monitoring stations. $PM_{10}$ mean concentrations were high in fall and winter because of low wind speed and many haze days. The number of exceeding the daily standard of $PM_{10}$ in industrial area was approximately twice as many as that in residence area. $PM_{10}$ concentrations and visibility were influenced significantly by wind speed. Wind speed and visibility were below 1.8 m/s and 10 km, respectively when $PM_{10}$ concentrations were over $120{\mu}g/m^3$. $PM_{10}$ concentrations were high when haze was observed. The mean concentrations of $PM_{10}$ were $104{\pm}41.3{\mu}g/m^3$, $63{\pm}35.1{\mu}g/m^3$, and $49{\pm}26.9{\mu}g/m^3$, respectively when haze, mist and clear were observed.