• Title/Summary/Keyword: Agricultural Technology and Management Information

Search Result 293, Processing Time 0.031 seconds

Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map (토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구)

  • Yu, Jieun;Kim, Yoonji;Sung, Hyun-Chan;Lee, Kyung-il;Choi, Ji-yong;Jeon, Seung-woo
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

Agri-Food Business Models Based on NFC

  • Lee, Sung Chul;Kim, Nam Jung;Park, Jae Eun;Yu, Seong Gu;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2012
  • In recent times, NFC technology adaptations for smartphones have been increasing. This study proposes the adaptation of agri-food business models based on NFC technology and presents the basic technological characteristics of NFC. An NFC tag can store more information than prior tagging technology methods, such as QR codes, and provides a better user experience. Based on the unique features of NFC, this study suggests an NFC business model application for the agri-food business.

  • PDF

The Effects of Amendments on Composting of Swine Carcass (부자재가 돼지 사체 퇴비화에 미치는 영향)

  • 홍지형;최병민
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • The purpose of this study is to provide information for the livestock for the livestock carcass composting operation in agricultural waste management. Burial, landfilling and incineration of livestock carcass may have environmental regulatory and economic liabilities. Dead animals amended with agricultural residues can be composted and used to promote soil fertility and reduce environmental pollution. In this study we evaluated the effect of amendments on the primary and secondary composting reaction and stability of compost. The full-scale composting bin of swine carcass in roofed system with three amendments was adequate in reaching sufficient temperature above 55$^{\circ}C$ long enough to kill the pathogen. The average temperature of the compost material in dead swine amended with corn stover increased rapidly to 64$^{\circ}C$ on the 2nd day after primary composting and dropped to near ambient temperature on the 140th day of composting. The composting with of corn stover and wheat straw are more efficient for swine carcass composting than that of sawdust. Therefore, the amendment property is an important factor in the design of composting facility.

A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms (스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계)

  • Jeong, Yina;Lee, Byungkwan;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes the AMCS(Agricultural Machine Control System that distinguishes farms using satellite photos or drone photos of farms and controls the self-driving and operation of farm drones and tractors. The AMCS consists of the LSM(Local Server Module) which separates farm boundaries from sensor data and video image of drones and tractors, reads remote control commands from the main server, and then delivers remote control commands within the management area through the link with drones and tractor sprinklers and the PSM that sets a path for drones and tractors to move from the farm to the farm and to handle work at low cost and high efficiency inside the farm. As a result of AMCS performance analysis proposed in this paper, the PSM showed a performance improvement of about 100% over Dijkstra algorithm when setting the path from external starting point to the farm and a higher working efficiency about 13% than the existing path when setting the path inside the farm. Therefore, the PSM can control tractors and drones more efficiently than conventional methods.

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

Genetic Diversity and Population Structure of a Korean Rice Germplasm Based on DNA Profiles

  • Lee, Kyung Jun;Lee, Jung-Ro;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An;Chung, Jong-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Information on the patterns of genetic diversity and population structure is essential for the rational use and efficient management of germplasms; accurate information aids in monitoring germplasms, and can also be used to predict potential genetic gains. In this study, we assessed genetic diversity, focusing on Korean rice accessions for theand their sustainable conserved diversity. Using DNA profiling with 12 simple sequence repeat (SSR) markers, we detected a total of 333 alleles among 2,016 accessions. The number of alleles ranged from 21 to 53, with an average of 27.8. Average polymorphism information content was 0.797, with the lowest being 0.667 and the highest 0.940. CA cluster analysis and the model-based population structure revealed two main groups that could be subdivided into five subgroups. Analysis of the molecular variance study based on the SSR profile data showed 5% variance among the profiles, whereas we recorded 93% variance among individuals and 2% variance within individuals. Specifically, the utilized diversity for of the breeding program is restricted in that cultivars were located in limited clades. These results revealed that preserving the diversity of Korean landraces could be useful sources for breeding new rice cultivars, and cwould be the basis for the sustainable conservation and utilization of a Korean rice germplasm.

Building a Private Cloud-Computing System for Greenhouse Control

  • Kim, JoonYong;Lee, Chun Gu;Park, Dong-Hyeok;Park, Heun Dong;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.440-444
    • /
    • 2018
  • Purpose: Cloud-computing technology has several advantages, including maintenance, management, accessibility, and computing power. A greenhouse-control system utilizing these advantages was developed using a private cloud-computing system. Methods: A private cloud needs a collection of servers and a suite of software tools to monitor and control cloud-computing resources. In this study, a server farm, operated by OpenStack as a cloud platform, was constructed using servers, and other network devices. Results: The greenhouse-control system was developed according to the fundamental cloud service models: infrastructure as a service, platform as a service, and software as a service. This system has four additional advantages - security, control function, public data use, and data exchange. There are several considerations that must be addressed, such as service level agreement, data ownership, security, and the differences between users. Conclusions: When the advantages are utilized and the considerations are addressed, cloud-computing technology will be beneficial for agricultural use.

Development of Remote Monitoring and Control Systems in Bottle Cultivation Environments of Oyster Mushrooms (느타리 병버섯 재배사 원격환경 모니터링 및 제어시스템 개발)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Yun, Nam-Kyu
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.118-123
    • /
    • 2017
  • This study was carried out to develop the technology to manage the growth of mushrooms, which were cultivated based on long-term information obtained from quantified data. In this study, hardware that monitored and controlled the growth environment of the mushroom cultivation house was developed. An algorithm was also developed to grow mushrooms automatically. Environmental management for the growth of mushrooms was carried out using cultivation sites, computers, and smart phones. To manage the environment of the mushroom cultivation house, the environmental management data from farmers cultivating the highest quality mushrooms in Korea were collected and a growth management database was created. On the basis of the database value, the management environment for the test cultivar (hukthali) was controlled at $0.5^{\circ}C$ with 3-7% relative humidity and 10% carbon dioxide concentration. As a result, it was possible to produce mushrooms that were almost similar to those cultivated in farms with the best available technology.

Development of Crop Management Technology through Implementation of Heterogeneous Integrated Sensor-type Smart Tag Function (이기종 통합 센서형 스마트 태그 기능 구현을 통한 농작물 관리 기술 개발)

  • Bong-Hyun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 2024
  • In order to monitor the growth environment of new varieties of crops, it is necessary to build the agricultural production infrastructure and strengthen the agricultural resource management system using popular smart sensor tag technology. In addition, the infrastructure for improving high-quality new varieties of crops using IoT technology and the monitoring system must be strengthened. In other words, widespread smart sensor (RFID UHF Sensor Tag) technology for environmental monitoring required for improving new crop varieties is desperately needed in the smart farm environment. Therefore, in this paper, we implemented an integrated sensor that can implement smart tag functions based on heterogeneous integrated sensors. In addition, we developed a technology that can manage crops in real time through the implemented smart integrated tag and smartphone linkage. For this purpose, an integrated antenna capable of RFID and Bluetooth communication was constructed. In addition, a communication method that allows information to be collected directly from the smartphone through the Bluetooth function was used.

Measures to use the Land Price Information System in Connection with the PDA Technology for Investigation of Land Characteristics (토지특성 조사를 위한 지가정보시스템과 PDA의 연계 활용 기법)

  • Lee Kye-Dong;Jeong Tea-Su;Hahm Chang-Hahk;Lee Jea-Kee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.521-526
    • /
    • 2006
  • As a result of establishing the regional self-government system, regional residents came to take more interest in their land ownership rights and relevant areas. The administrative bodies in South Korea are trying their best to meet the complicated and diversified demands of the residents regarding land and construction administration. However, governmental agencies are having difficulties identifying land characteristics on the field as part of standard lands change every year. Also, the vague boundaries of agricultural and mountainous land areas are causing surveyors problems in spotting the right areas. Thus, this study intends to provide information and guidance on an accurate land price calculation system in connection between the land information system and PDA technology for distribution of accurate information regarding lands and their management.

  • PDF