• Title/Summary/Keyword: Aging Resistance

Search Result 426, Processing Time 0.026 seconds

The Evaluation of Materials Degradation in Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 열화도 평가)

  • Hyeon, Yang-Gi;Lee, Jae-Do
    • 연구논문집
    • /
    • s.31
    • /
    • pp.157-163
    • /
    • 2001
  • Evolution of microstructure due to service exposure to high temperature has a strong effect performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarcening of $M_23C_6$-type carbides is the primary cause of degradation of mechanical properties such as creep resistance, tensile strength and toughness. Creep tests have been carried out on pre-aging mod. 9Cr-1Mo steels to examine the effect of pre-aging and stress on the creep strength. Based on the results, a nondestructive procedure, where electrochemical technique that quantitatively detect laves phases and $M_23C_6$-type carbides in a material is used, has been proposed to evaluate a residual creep life of mod. 9Cr-1Mo steels.

  • PDF

A review of osteosarcopenic obesity related to nutritional intake and exercise

  • Lee, Namju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.797-803
    • /
    • 2019
  • Recently, osteosarcopenic obesity (OSO) has been identified and notified world wide. Therefore, this study reviewed OSO related to lifestyle factors such as nutritional intake and exercise. Due to aging, OSO may be initiated by dietary factors and obesity related factors. Reduced muscle mass and increased fat mass may negatively impact bone health causing OSO. The complication of OSO development should be related to dietary imbalance combined with declined exercise and this may contribute to induce OSO by decreasing bone mass, muscle mass, and increasing obesity with aging. To prevent OSO, reaching peak bone mass and building optimal muscle and fat mass through exercise would be recommended. For treating OSO, balanced dietary intake and regular exercise through a whole life would be needed. In addition, sufficient carbohydrate and fat intake for minimizing protein catabolism would be recommended to prevent OSO. The combination of aerobic exercise and resistance training also would be an effective intervention for OSO population.

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

Study on Property Modification with Polymer Compositions in the Manufacture of Compounds for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • Herein, three polymer compounds were manufactured using three polymer combination methods, ethylene-vinyl acetate/ethylene-propylene-diene-copolymer (EPDM), ethylene-vinyl acetate (EVA)/polyethylene-A (PE-A; density: 0.870), and ethylene-vinyl acetate (EVA)/polyethylene-B (PE-B; density: 0.885), for making cable sheath for use in the shipping industry. In this study, EVA, EPDM, PE-A, and PE-B were used as matrix polymers, and EVA-grafted maleic anhydride was used as a coupling agent for compounding with various compounds such as a fire retardant, cross-linking agent, filler, and other additives, besides the plasticizer. ${\Delta}T$, Mooney viscosity, and tensile strength increased in order of EPDM < PE-A < PE-B, the probable reason is due to the different crosslinking effect. The three compounds showed similar results for fire resistance and aging resistance after compounding process, but they showed excellent cold resistance owing to the non-polarity of the polymers and sufficient plasticizer content.

Battery Internal Resistance Measurement System Robust to Charger Harmonic Noise (충전기 고조파 잡음에 강인한 배터리 내부저항 측정 시스템)

  • Lee, Hyung-Kyu;Kim, Gi-Taek
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1129-1135
    • /
    • 2020
  • The effects of battery aging limit the rechargeable capacity, State of Health(SoH). It is very important to estimate the SoH in the battery monitoring system(BMS) and many algorithms of measuring the internal resistance of the battery were proposed. A method is used by applying a current source of a specific frequency to the battery and measuring the voltage response. When charging harmonic noise is generated in the voltage response, it results in poor resistance measurement accuracy. In this paper, a robust battery internal resistance measurement algorithm is proposed to eliminate the effect of charging noise by integrating the current source and voltage response signals for a certain period. It showed excellent accuracy and stable measurement results. Applying to the BMS for uninterruptible power supply, the usefulness of the proposed method is verified.

Changes in the Biomechanical Properties of Ankle Plantarflexors Following 8-week Resistance Training with or without Whole-Body Vibration in Older Women (8주간의 체중을 이용한 저항운동 시 전신진동 유·무에 따른 노인 여성하지의 발바닥쪽굽힘근의 생체역학적 특성 변화)

  • Han, Bo-Ram;Lee, Dae-Yeon;Jeong, Si-Woo;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.399-415
    • /
    • 2014
  • The aim of this study was to investigate the effect of resistance training with and without whole-body vibration(WBV) on the biomechanical properties of the plantarflexor in the elderly women (>60 yrs., n=35). Thirty-five volunteers were randomly assigned to a resistance training with WBV group (RVT, n=14), a resistance training without WBV (RT, n=11), and a non-training control group (CON, n=10). The RVT and the RT groups participated in the training sessions three times a week for 8 weeks, followed by a 4-week detraining period. The CON group was instructed to refrain from any type of resistance training. To assess strength and activation of the plantarflexor muscles, maximum isometric ankle plantarflexion torque and muscle activation of the triceps surae muscles were measured using dynamometry, twitch interpolation technique and electromyography at four different ankle joint angles. Also, the lower extremity function was assessed by vertical jumping. The measurements were performed prior to, 2 and 8 weeks after the training and after a 4-week detraining period. Following the 8-week training sessions, an increase in the isometric plantarflexion strength was found to be greater for the RVT compared with the RT group (p<.05). Muscle inhibition was significantly decreased after training than before training only for the RVT (p<.05). Following the detraining period, a decrease in isometric plantarflexors strength and a increases in muscle inhibition were significantly less in the RVT compared with the RT group. In conclusion, the exercise with WBV is a feasible training modality for the elderly and seems to have a boosting effect when used with conventional resistance training.

The Study of Corrosion Behavior for Solution and Aging Heat Treated Ti alloy (Ti 합금의 용체화열처리와 시효열처리에 따른 부식거동)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2016
  • Titanium is resistant to general corrosion and in sea water because of the passivity layer film on the surface of material, but may be attacked by environments that cause breakdown of the protective oxide layer including hydrochloric, sulfuric and phosphoric acids. In this study, the Ti alloys were solution heat treatment 5hours at $1066^{\circ}C$ and $966^{\circ}C$, and followed by aging heat treated, 1, 4, 8 and 16 hours in $500^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ respectively. The heat treated specimens were measured micro Vicker's hardness, and then accomplished electrochemical polarization test for comparing corrosion in 1N sulfuric acid solution. Additionally, micro structures were taken for corrosion tested specimens. The results showed that corrosion resistance was higher in solution heat treated alloy than base and age heat treated metal. Measured corrosion resistants were increased as increasing aging heat treatment time and temperature.

Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향)

  • Ko, Min-Kwan;Ahn, Jee-Hyuk;Lee, Young-Chul;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.

Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack (고분자 전해질 연료전지 스택용 고무 개스킷의 노화특성 연구)

  • Kang, Dong-gug;Hur, Byung-ki;Lee, Dong-won;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2011
  • In order to explore properties of various rubber compounds after thermal aging under the condition similar to the operating environment of a fuel cell-stack, heat resistance and compression set of those compounds were investigated for a long term operation in $H_2SO_4$, $H_2O$, and LLC (ethylene glycol : $H_2O=50:50$) solution. It was assumed that aging Acrylonitrile butadiene rubber (NBR) and Elthylene Propylene diene rubber (EDPM) compound in the solution resulted in discoloration as time passed. It was also found that hydrolysis was developed on the Silicone rubber (VMQ) compound intentionally aged under acidic condition by means of TGA, SEM, and EDS analysis.

Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging

  • Laura Vitoria Rizzatto;Daniel Meneghetti;Marielle Di Domenico;Julia Cadorin Facenda;Katia Raquel Weber;Pedro Henrique Corazza;Marcia Borba
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • PURPOSE. The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CADCAM materials after aging. MATERIALS AND METHODS. A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS. The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION. The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.