DOI QR코드

DOI QR Code

Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack

고분자 전해질 연료전지 스택용 고무 개스킷의 노화특성 연구

  • Kang, Dong-gug (Research & Development Institute, Pyung-hwa Oil Seal Industry Co. LTD.) ;
  • Hur, Byung-ki (Research & Development Institute, Pyung-hwa Oil Seal Industry Co. LTD.) ;
  • Lee, Dong-won (PCK Industry Co. Ltd.) ;
  • Seo, Kwan-ho (Department of Polymer Science, Kyungpook National University)
  • 강동국 (평화오일씰공업(주) 기술개발본부) ;
  • 허병기 (평화오일씰공업(주) 기술개발본부) ;
  • 이동원 (피시케이(주)) ;
  • 서관호 (경북대학교 고분자공학과)
  • Received : 2010.11.02
  • Accepted : 2011.02.07
  • Published : 2011.04.10

Abstract

In order to explore properties of various rubber compounds after thermal aging under the condition similar to the operating environment of a fuel cell-stack, heat resistance and compression set of those compounds were investigated for a long term operation in $H_2SO_4$, $H_2O$, and LLC (ethylene glycol : $H_2O=50:50$) solution. It was assumed that aging Acrylonitrile butadiene rubber (NBR) and Elthylene Propylene diene rubber (EDPM) compound in the solution resulted in discoloration as time passed. It was also found that hydrolysis was developed on the Silicone rubber (VMQ) compound intentionally aged under acidic condition by means of TGA, SEM, and EDS analysis.

연료전지 스택 작동환경에서의 열노화 특성을 살펴보기 위하여 다양한 고무 compound의 내열 및 압축 영구 줄음률의 평가를 실시하고, 스택의 장시간 운전을 통해 접합할 수 있는 대상액인 $H_2SO_4$, $H_2O$, LLC (Ethylene glycol : $H_2O=50:50$)에 대하여 장시간 평가를 실시하였다. NBR과 EPDM은 시간이 경과할수록 침적액의 변색하는 것을 알 수 있었으며, VMQ는 $H_2SO_4$ 분위기에서 시간에 따라 고무가 노화되는 것을 TGA, SEM, EDS 분석을 통하여 확인하였다.

Keywords

Acknowledgement

Supported by : 한국산업기술진흥원, 대구 광역시

References

  1. A. Parthasarathy and S. Srinivasan, J. Electroanal. Chem., 339, 101 (1992). https://doi.org/10.1016/0022-0728(92)80447-C
  2. S. Srinivasan and M. Enayetullah, Energy Convers. Eng. Conf., 3, 1623 (1989).
  3. E. J. Ahn, G. G. Park, Y. K. Yoon, J. S. Park, W. Y. Lee, and C. S. Kim, J. Kor. Electrochemical Society, 10, 306 (2007). https://doi.org/10.5229/JKES.2007.10.4.306
  4. G. Y. Kim, J. Kor. Ins. of Electrical and Electronic Material Engineers, 20, 1000 (2007). https://doi.org/10.4313/JKEM.2007.20.11.1000
  5. D. K. Kim, S. D. Deul, and J. E. Sohn, J. Kor. Ins. of Rubber. Ind., 22, 324 (1987).
  6. D. J. Moon, D. K. Kim, and S. D. Seul, J. Kor. Ins. of Rubber. Ind., 24, 11 (1989).
  7. B. Amedurii, B. Boutevin, and G. Kostov, Prog. Polym. Sci., 26, 105 (2001). https://doi.org/10.1016/S0079-6700(00)00044-7
  8. J. U. Lee, W. K. Kim, and B. H. Kim, J. Kor. Ins. of Rubber. Ind., 21, 121 (1986).
  9. B. Ssrille and A. A. Watson, Rubber Chem. Technol., 40, 100 (1967). https://doi.org/10.5254/1.3539039
  10. T. R. G. Trelonr, Rubber Chem. Technol., 47, 625 (1974). https://doi.org/10.5254/1.3540456
  11. L. A. Wood, Rubber Chem. Technol., 53, 116 (1980). https://doi.org/10.5254/1.3535021
  12. D. W. Lee, D. G. Kang, and K. H. Seo, Polymer (Korea), 32, 1 (2008).
  13. W. Hofmann, Rubber Technology Handbook, Hanser Publishers, (1989).
  14. D. S. Huh, Elastomer, 18, 21 (1983).
  15. K. Nagdi, Rubber as an Engineering Material : Guideline for Users, Hanser Pub., 138 (1993).