DOI QR코드

DOI QR Code

Battery Internal Resistance Measurement System Robust to Charger Harmonic Noise

충전기 고조파 잡음에 강인한 배터리 내부저항 측정 시스템

  • Received : 2020.11.30
  • Accepted : 2020.12.28
  • Published : 2020.12.31

Abstract

The effects of battery aging limit the rechargeable capacity, State of Health(SoH). It is very important to estimate the SoH in the battery monitoring system(BMS) and many algorithms of measuring the internal resistance of the battery were proposed. A method is used by applying a current source of a specific frequency to the battery and measuring the voltage response. When charging harmonic noise is generated in the voltage response, it results in poor resistance measurement accuracy. In this paper, a robust battery internal resistance measurement algorithm is proposed to eliminate the effect of charging noise by integrating the current source and voltage response signals for a certain period. It showed excellent accuracy and stable measurement results. Applying to the BMS for uninterruptible power supply, the usefulness of the proposed method is verified.

배터리를 사용함에 따라 노화가 진행되면 배터리의 충전 가능 용량을 나타내는 State of Health(SoH)가 줄어들게 된다. 배터리 모니터링 시스템(BMS)에서 SoH를 추정하는 것이 매우 중요하며, 이를 위해 배터리 내부 저항을 측정하는 방법이 많이 사용된다. 일반적으로 배터리에 특정한 주파수의 전류원을 인가하고 전압응답을 측정하여 내부저항을 연산한다. 충전기가 동작할 경우 전압응답에 충전 고조파 잡음이 발생하여 저항 측정의 정확도가 떨어진다. 본 논문에서는 충전잡음의 영향을 제거하기 위하여 강인한 배터리 내부저항 측정 알고리즘을 제안하였다. 전류원 신호와 전압응답 신호를 일정한 주기 동안 적분하여 잡음을 제거하는 방법으로 우수한 정확도와 안정된 연산결과를 보였다. 무정전 전원장치용 BMS에 적용하여 제안한 방법의 유용함을 입증하였다.

Keywords

References

  1. Xintian Liu et al., "A new dynamic SOH estimation of lead-acid battery for substation application," In ternational Journal of Energy Research, vol.41, no.4, pp.579-592, 2017. DOI: 10.1002/er.3662
  2. Jacques Marchildon et al., "SOC and SOH characterization of lead acid batteries," IEEE IECON, vol.41, pp.1442-1446, 2015. DOI: 10.1109/IECON.2015.7392303
  3. Jussi Sihvo et al., "Fast Approach for Battery Impedance Identification Using Pseudo-Random Sequence Signals," IEEE Trans. on Power Electronics, vol.35, no.3, pp.2548-2557, 2019. DOI: 10.1109/TPEL.2019.2924286
  4. Yuan Cao et al., "Evaluation of paralleled battery system with SOC balancing and battery impedance magnitude measurement," 2018 IEEE APEC, 2018. DOI: 10.1109/APEC.2018.8341048
  5. IEEE Standard Association, "IEEE guide for selection and use of battery monitoring equipment in stationary applications," IEEE Std. pp.1491-2012, 2012.
  6. Mihai Victor Micea et al., "Online State-of-Health Assessment for Battery Management Systems," IEEE Trans. on Instrumentation and Measurement, vol.60, no.6, pp.1997-2006, 2011. DOI: 10.1109/TIM.2011.2115630
  7. Hyung Kyu Lee et al., "Battery Monitoring System for High Capacity Uninterruptible Power Supply," Journal of IKEEE, vol.23, no.2, pp.580-585, 2019. DOI: 10.7471/ikeee.2019.23.2.580
  8. Monika Kwiecien et al., "Determination of SoH of Lead-Acid Batteries by Electrochemical Impedance Spectroscopy," Applied Sciences, vol.8, no.6, pp.873-895, 2017. DOI: 10.3390/app8060873