• Title/Summary/Keyword: Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans)

Search Result 53, Processing Time 0.028 seconds

Effect of Sub-Minimal Inhibitory Concentration Antibiotics on Morphology of Periodontal Pathogens

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Minimal inhibitory concentration (MIC) is the lowest concentration of antibiotics that inhibits the visible growth of a microorganism. It has been reported that sub-MIC of antibiotics may result in morphological alterations along with biochemical and physiological changes in bacteria. The purpose of this study was to examine morphological changes of periodontal pathogens after treatment with sub-MIC antibiotics. Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis were used in this study. The MIC for amoxicillin, doxycycline, metronidazole, penicillin, and tetracycline were determined by broth dilution method. The bacterial morphology was observed with bright field microscope after incubating with sub-MIC antibiotics. The length of A. actinomycetemcomitans and F. nucleatum were increased after incubation with metronidazole; penicillin and amoxicillin. P. gingivalis were increased after incubating with metronidazole and penicillin. However, F. nucleatum showed decreased length after incubation with doxycycline and tetracycline. In this study, we observed that sub-MIC antibiotics can affect the morphology of periodontal pathogens.

Humoral immune responses to periodontal pathogens in the elderly

  • Shet, Uttom;Oh, Hee-Kyun;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su;Lim, Hoi-Jeong;Shin, Min-Ho;Lee, Seok-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.178-183
    • /
    • 2015
  • Purpose: Elderly people are thought to be more susceptible to periodontal disease due to reduced immune function associated with aging. However, little information is available on the nature of immune responses against putative periodontal pathogens in geriatric patients. The purpose of this study was to evaluate the serum IgG antibody responses to six periodontal pathogens in geriatric subjects. Methods: The study population consisted of 85 geriatric patients and was divided into three groups: 29 mild (MCP), 27 moderate (MoCP), and 29 severe (SCP) chronic periodontitis patients. Serum levels of IgG antibody to Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Prevotella intermedia were measured by enzyme-linked immunosorbent assay (ELISA) and compared among the groups. Results: All three groups showed levels of serum IgG in response to P. gingivalis, A. actinomycetemcomitans, and P. intermedia that were three to four times higher than levels of IgG to T. forsythia, T. denticola, and F. nucleatum. There were no significant differences among all three groups in IgG response to P. gingivalis (P=0.065), T. forsythia (P=0.057), T. denticola (P=0.1), and P. intermedia (P=0.167), although the IgG levels tended to be higher in patients with SCP than in those with MCP or MoCP (with the exception of those for P. intermedia). In contrast, there were significant differences among the groups in IgG levels in response to F. nucleatum (P=0.001) and A. actinomycetemcomitans (P=0.003). IgG levels to A. actinomycetemcomitans were higher in patients with MCP than in those with MoCP or SCP. Conclusions: When IgG levels were compared among three periodontal disease groups, only IgG levels to F. nucleatum significantly increased with the severity of disease. On the contrary, IgG levels to A. actinomycetemcomitans decreased significantly in patients with SCP compared to those with MCP. There were no significant differences in the IgG levels for P. gingivalis, T. forsythia, T. denticola, and P. intermedia among geriatric patients with chronic periodontitis.

Identification of Antimicrobial Peptide Hexamers against Oral Pathogens through Rapid Screening of a Synthetic Combinatorial Peptide Library

  • Song, Je-Seon;Cho, Kyung Joo;Kim, Joungmok;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • A positional scanning synthetic peptide combinatorial library (PS-SCL) was screened in order to identify antimicrobial peptides against the cariogenic oral bacteria, Streptococcus mutans. Activity against Streptococcus gordonii and Aggregatibacter actinomycetemcomitans was also examined. The library was comprised of six sub-libraries with the format $O_{(1-6)}XXXXX-NH_2$, where O represents one of 19 amino acids (excluding cysteine) and X represents equimolar mixture of these. Each sub-library was tested for antimicrobial activity against S. mutans and evaluated for antimicrobial activity against S. gordonii and A. actinomycetemcomitans. The effect of peptides was observed using transmission electron microscopy (TEM). Two semi-mixture peptides, RXXXXN-$NH_2$ (pep-1) and WXXXXN-$NH_2$ (pep-2), and one positioned peptide, RRRWRN-$NH_2$ (pep-3), were identified. Pep-1 and pep-2 showed significant antimicrobial activity against Gram positive bacteria (S. mutans and S. gordonii), but not against Gram negative bacteria (A. actinomycetemcomitans). However, pep-3 showed very low antimicrobial activity against all three bacteria. Pep-3 did not form an amphiphilic ${\alpha}$-helix, which is a required structure for most antimicrobial peptides. Pep-1 and pep-2 were able to disrupt the membrane of S. mutans. Small libraries of biochemically-constrained peptides can be used to generate antimicrobial peptides against S. mutans and other oral microbes. Peptides derived from such libraries may be candidate antimicrobial agents for the treatment of oral microorganisms.

A meta-analysis of microbiota implicated in peri-implantitis

  • Han-gyoul Cho;Ran-Yi Jin;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.3
    • /
    • pp.19-31
    • /
    • 2023
  • Peri-implantitis is a disease affecting the tissue surrounding dental implants, destroying both soft and hard tissues. A total of 2,015 studies were collected by searching items in the National Library of Medicine, including keywords, such as "peri-implantitis," "microbiota," and "microbiome." Of them, 62 studies were screened and considered eligible for analysis. Only 16 studies qualified all criteria mentioned here: "Using PCR methods for microorganism detection," "Suggesting quantified results," "Stating obvious clinical diagnosis criteria ("Bleeding on probing," "Probing pocket depth," "Suppuration," and "Radiographic bone loss")." Only 8 studies were included in the meta-analysis because the others had special issues. Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Epstein-Barr virus were the microbiological subjects of analysis. The odds ratio (OR) between the healthy implants and peri-implantitis were calculated for each microorganism to compare two groups, and the forest plots were suggested as the visual materials. P. gingivalis (1.392 < OR < 2.841), T. forsythia (1.345 < OR < 3.221), T. denticola (2.180 < OR < 5.150), A. actinomycetemcomitans (1.975 < OR < 6.456), P. intermedia (1.245 < OR < 3.612), and Epstein-Barr virus (1.995 < OR < 9.383). The species showed that their 95% confidence interval of odds ratio was higher than 1, indicating that they were detected more frequently in periimplantitis than in healthy implants. Meanwhile, other species, such as Fusobacterium nucleatum and Staphylococcus aureus, were not included in the meta-analysis because the number of studies was insufficient.

Comparison of serum amyloid A protein and C-reactive protein levels as inflammatory markers in periodontitis

  • Ardila, Carlos Martin;Guzman, Isabel Cristina
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Purpose: The purpose of this study was to compare serum amyloid A (SAA) protein levels with high-sensitive C-reactive protein (hs-CRP) levels as markers of systemic inflammation in patients with chronic periodontitis. The association of serum titers of antibodies to periodontal microbiota and SAA/hs-CRP levels in periodontitis patients was also studied. Methods: A total of 110 individuals were included in this study. Patients were assessed for levels of hs-CRP and SAA. Nonfasting blood samples were collected from participants at the time of clinical examination. The diagnosis of adipose tissue disorders was made according to previously defined criteria. To determine SAA levels, a sandwich enzyme-linked immunosorbent assay was utilized. Paper points were transferred to a sterile tube to obtain a pool of samples for polymerase chain reaction processing and the identification of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia. The serum level of IgG1 and IgG2 antibodies to P. gingivalis, A. actinomycetemcomitans, and T. forsythia was also determined. Results: SAA and hs-CRP levels were higher in periodontitis patients than in controls (P<0.05). In bivariate analysis, high levels of hs-CRP (>3 mg/L) and SAA (>10 mg/L) were significantly associated with chronic periodontitis (P=0.004). The Spearman correlation analysis between acute-phase proteins showed that SAA positively correlated with hs-CRP (r=0.218, P=0.02). In the adjusted model, chronic periodontitis was associated with high levels of SAA (odds ratio [OR], 5.5; 95% confidence interval [CI], 1.6-18.2; P=0.005) and elevated hs-CRP levels (OR, 6.1, 95% CI, 1.6-23.6; P=0.008). Increased levels of serum IgG2 antibodies to P. gingivalis were associated with high levels of SAA (OR, 3.6; 95% CI, 1.4-8.5; P=0.005) and high concentrations of hs-CRP (OR, 4.3; 95% CI, 1.9-9.8; P<0.001). Conclusions: SAA and hs-CRP concentrations in patients with chronic periodontitis are comparably elevated. High serum titers of antibodies to P. gingivalis and the presence of periodontal disease are independently related to high SAA and hs-CRP levels.

Comparison of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ Bacterial Viability Test and alamarBlue$^{(R)}$ Method for Enumeration of Live and Dead Bacteria for Oral Bacterial Species

  • Kim, Yeon-Hee;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.197-201
    • /
    • 2012
  • LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ and alamarBlue$^{(R)}$ are fluorescent materials used for the enumeration of live and dead bacteria. LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is generally used for confocal microscopy applications to differentiate live from dead bacteria in a biofilm or planktonic state. AlamarBlue$^{(R)}$ has also been used widely to assay live and dead bacteria in a planktonic state. Whilst these materials are successfully utilized in experiments to discriminate live from dead bacteria for several species of bacteria, the application of these techniques to oral bacteria is limited to the use of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ in biofilm studies. In our present study, we assessed whether these two methods could enumerate live and dead oral bacterial species in a planktonic state. We tested the reagents on Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Enterococcus faecalis and found that only LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ could differentiate live from dead cells for all five of these oral strains. AlamarBlue$^{(R)}$ was not effective in this regard for P. gingivalis or A. actinomycetemcomitans. In addition, the differentiation of live and dead bacterial cells by alamarBlue$^{(R)}$ could not be performed for concentrations lower than $2{\times}10^6$ cells/ml. Our data thus indicate that LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is a more effective reagent for this analysis.

Subgingival pathogens in chronic periodontitis patients affected by type 2 diabetes mellitus: a retrospective case-control study

  • Montevecchi, Marco;Valeriani, Leoluca;Gatto, Maria Rosaria;D'Alessandro, Giovanni;Piana, Gabriela
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.409-421
    • /
    • 2021
  • Purpose: The aim of this study was to compare the prevalence and bacterial load of 6 main periodontal pathogens between pairs of periodontal patients with and without type 2 diabetes mellitus. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans genotypes were also investigated. Methods: Twenty patients affected by chronic periodontitis and type 2 diabetes were retrospectively selected and matched to 20 patients without diabetes on the basis of the degree and severity of periodontal disease. Microbiological data of subgingival biofilms were analysed and compared for the examined pathogens: A. actinomycetemcomitans, P. gingivalis, Prevotella intermedia, Treponema denticola, Fusobacterium nucleatum, and Tannerella forsythia. Results: The pairs were balanced in terms of demographic and clinical parameters, except for bleeding on probing and suppuration. In the microbiological test sites (4 for each patient), the mean probing pocket depth was 6.34±1.63 mm in patients with diabetes and 6.41±1.78 mm in patients without diabetes. No significant difference between pairs in the prevalence of P. gingivalis or the distribution of its genotypes was recorded. Patients with diabetes had a significantly greater amount of total bacterial load, P. gingivalis, T. denticola, T. forsythia, and F. nucleatum (P<0.05). Moreover, patients with diabetes had a higher number of sites with a greater cell count than patients without diabetes. When compared to the total bacterial load, only T. forsythia maintained its relative load in patients with diabetes (P=0.001). Conclusions: This retrospective matched study supports the hypothesis that microbiological differences exist among periodontal patients with and without diabetes mellitus.

Antimicrobial Activity of Berberine against Oral Bacteria Related to Endodontic Infections

  • Lee, Dongkyun;Kim, Min Jung;Park, Soon-Nang;Lim, Yun Kyong;Min, Jeong-Beom;Hwang, Ho-Keel;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • It has been established that berberine has strong antimicrobial effects. Little is known however regarding the antimicrobial activity of berberine against endodontic pathogenic bacteria or its cytotoxicity in human oral tissue cells. The antibacterial properties of berberine were tested against 5 strains of Enterococcus faecalis and type strains of Aggregatibacter actinomycetemcomitans, Prevotella nigrescens, Prevotella intermedia, and Tannerella forsythia, which are involved in endodontic infections. Antimicrobial activity was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) measurements. The viability of normal human gingival fibroblast (NHGF) cells after exposure to berberine was measured using a methyl thiazolyl tetrazolium (MTT) assay. The data showed that berberine has antimicrobial effects against A. actinomycetemcomitans with an MIC and MBC of $12.5{\mu}g/ml$ and $25{\mu}g/ml$, respectively. In the cytotoxicity studies, cell viability was maintained at 66.1% following exposure to $31.3{\mu}g/ml$ berberine. Overall, these findings suggest that berberine has antimicrobial activity against the tested bacteria. Nevertheless, lower concentrations in combination with other reagents will need to be tested before these in vitro results can be translated to clinical use.

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo;Pozzer, Leandro;Cavalieri-Pereira, Lucas;De Moraes, Paulo Hemerson;Olate, Sergio;De Albergaria Barbosa, Jose Ricardo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.217-223
    • /
    • 2012
  • Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

In vitro investigation of the antibacterial and anti-inflammatory effects of LED irradiation

  • Jungwon Lee;Hyun-Yong Song;Sun-Hee Ahn;Woosub Song;Yang-Jo Seol;Yong-Moo Lee;Ki-Tae Koo
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • Purpose: This study aimed to investigate the proper wavelengths for safe levels of light-emitting diode (LED) irradiation with bactericidal and photobiomodulation effects in vitro. Methods: Cell viability tests of fibroblasts and osteoblasts after LED irradiation at 470, 525, 590, 630, and 850 nm were performed using the thiazolyl blue tetrazolium bromide assay. The bactericidal effect of 470-nm LED irradiation was analyzed with Streptococcus gordonii, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia. Levels of nitric oxide, a proinflammatory mediator, were measured to identify the anti-inflammatory effect of LED irradiation on lipopolysaccharide-stimulated inflammation in RAW 264.7 macrophages. Results: LED irradiation at wavelengths of 470, 525, 590, 630, and 850 nm showed no cytotoxic effect on fibroblasts and osteoblasts. LED irradiation at 630 and 850 nm led to fibroblast proliferation compared to no LED irradiation. LED irradiation at 470 nm resulted in bactericidal effects on S. gordonii, A. actinomycetemcomitans, F. nucleatum, P. gingivalis, and T. forsythia. Lipopolysaccharide (LPS)-induced RAW 264.7 inflammation was reduced by irradiation with 525-nm LED before LPS treatment and irradiation with 630-nm LED after LPS treatment; however, the effects were limited. Conclusions: LED irradiation at 470 nm showed bactericidal effects, while LED irradiation at 525 and 630 nm showed preventive and treatment effects on LPS-induced RAW 264.7 inflammation. The application of LED irradiation has potential as an adjuvant in periodontal therapy, although further investigations should be performed in vivo.