자율주행 자동차는 전통적인 차량의 주요 수송 기능을 수행 할 수 있는 자동 운전 차량 말하며, 그것은 주변 환경을 감지하고 인간의 어떠한 입력 없이 이동 가능하여야 한다. 본 논문에서는 이러한 자율주행 자동차를 시뮬레이션 할 수 있는 자율주행 자동차 에이전트를 설계하고 이에 대한 프로토타입을 개발하였다. 이를 위하여 자율주행 자동차에 대한 요구 사항을 분석하고, 전통적인 다중 에이전트 시스템에 적합하도록 에이전트를 설계하였다. 설계의 핵심 은 에이전트들은 오직 조종힘에 따라 이동하도록 하는 것이다. 설계된 에이전트의 프로토타입은 유니티3D를 이용하여 구현되었다. 프로토타입을 이용한 시뮬레이션 결과, 에이전트의 이동은 매우 자연스럽게 나타났다. 그러나 에이전트 수를 증가시키는 경우에 성능이 심각하게 저하되었고, 이에 대한 대안들을 제시하였다.
본 논문은 작업별 위치기반 지수학습 효과를 갖는 2-에이전트 단일기계 스케줄링 문제를 고려한다. 에이전트 A는 가중 완료 시간의 합을 최소화하며, 에이전트 B는 총소요시간에 대한 상한 값을 만족하는 조건을 갖는다. 본 연구에서는 먼저 우수해/가능해에 대한 특성을 개발하고, 이를 이용하여 최적 해를 찾기 위한 분지한계 알고리즘을 설계한다. 또한 근사 최적 해를 구하기 위해 6가지 다른 초기해 생성 방법을 이용한 시뮬레이티드 어닐링 알고리즘을 제안한다. 수치 실험을 통해 제안된 알고리즘의 우수한 성능을 검증한다. 실험 결과, 다른 초기해 생성 방법들 간에는 %errors 차이가 유의하게 발생하지 않았으며, 에이전트 A의 작업 순서를 무작위로 생성할 때 성능이 좋아짐을 발견하였다. 반면에, 에이전트 B의 초기해 생성 방법은 성능에 영향을 미치지 않았다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권1호
/
pp.29-33
/
2004
I propose a personalized digital library system (PDLS) based on an advanced distributed agent platform. The new platform is developed by improving the DECAF (Distributed Environment-Centered Agent Framework) which is one of the conventional distributed agent development toolkits. Also, a mobile ORB (Object Request Broker), Voyager, and a new multi agent negotiation algorithm are adopted to develop the advanced platform. The new platform is for mobile multi agents as well as the distributed environment, whereas the DECAF is for the distributed and non-mobile environment. From the results of the simulation the searched time of PDLS is lower, as the numbers of servers and agents are increased. And the user satisfaction is four times greater than the conventional client-server model. Therefore, the new platform has some optimality and higher performance in the distributed mobile environment.
Multi-agent technology is being regarded as one of the promising technologies for today's supply chain management because of its desirable features such as autonomy, intelligence, and collaboration. This paper suggests a multi-agent system architecture with which companies can improve the efficiency of their supply chains by collaborative operation. Reflecting the practical difficulties of collaboration in complex supply chains, the architecture allows agent systems to share information with only neighboring companies for the coordinated operation. The suggested architecture is elaborated with a collaboration model based on Petri-net, conversation models for communication, and internal behavior models of each agent. A simulation experiment was performed for the evaluation of the suggested architecture. The result implies that when the estimation of market demand is higher than a certain level, the suggested architecture can be beneficial.
In this study, we propose a reinforcement learning agent to control the data transmission rates of nodes in carrier sensing multiple access with collision avoidance (CSMA/CA)-based wireless networks. We design a reinforcement learning (RL) agent, based on Q-learning. The agent learns the environment using the timeout events of packets, which are locally available in data sending nodes. The agent selects actions to control the data transmission rates of nodes that adjust the modulation and coding scheme (MCS) levels of the data packets to utilize the available bandwidth in dynamically changing channel conditions effectively. We use the ns3-gym framework to simulate RL and investigate the effects of the parameters of Q-learning on the performance of the RL agent. The simulation results indicate that the proposed RL agent adequately adjusts the MCS levels according to the changes in the network, and achieves a high throughput comparable to those of the existing data transmission rate adaptation schemes such as Minstrel.
함정 전투체계는 무기체계, 정보통신 등의 기술 발전으로 인한 복잡한 전장 환경에 따라 인간이 개입하여 다양한 전술을 운용해야 한다. 따라서 에이전트 기반의 국방 M&S 시스템의 연구가 최근 들어 활발히 진행되고 있다. 그러나 현존하는 에이전트 기반 M&S 시스템은 고정된 전술을 적용하여 분석하는데 그치고 있다. 본 논문에서는 함정 교전에서 보다 적합한 대응을 찾기 위해 환경변화에 능동적으로 대처할 수 있도록 강화 학습 기능을 갖으며, 또한 유전 알고리즘을 이용하여 세대별 진화 학습 기능을 갖는 에이전트 모델링 방법론을 제안하였다. 타당성 검증을 위해 서해상에서 벌어지는 가상의 1:1 함정교전 시뮬레이션을 수행하였고, 이를 통해 함정 교전에 있어 강화 및 진화 학습이 가능함을 검증하였다.
The purpose of this study is to provide response methods to minimize the damage from chemical terrorism in a naturally ventilated indoor system using several types of dispersion simulations. Three chemical warfare agents such as sarin(GB), phosgene and chlorine gas which have high potential to be used in terror or to be involved with accidents were selected in this simulation. Fire dynamic simulation based on Large Eddy Simulation which is effective because of less computational effort and detailed expression of the dispersion flow was adopted to describe the dispersion behavior of these agents. When the vent speed is 0.005m/s, the heights of 0.1 agent mass fraction are 0.9m for sarin, 1.0m for phosgene and 1.1m for chlorine gas, and the maximum mass fraction are 0.27 for all three agents. However, when the vent speed is increased to 0.05m/s, the heights of 0.1 agent mass fraction become 1.6m for all three agents and maximum mass fraction inside the room increase to 0.70 for sarin, 0.58 for phosgene and 0.53 for chlorine gas. It is shown that molecular weight of the agents has an important role for dispersion, and it is important to install ventilation system with height less than 1.6m to minimize the damage from chemical toxicity.
해상교통 분야와 같이 선박, 항해사, 관제센터, 해운선사, 기상시스템, 지리정보시스템 등의 복잡하고 넓은 범위의 요구사항을 갖는 시스템의 모델링 및 시뮬레이션(Modeling and Simulation, M&S)을 위해서는 인간을 포함한 체계가 필요하다. 해상교통을 모의하기 위해서는 주요 요소인 항해사의 인적요인에 대한 모델링이 필요하다. 즉, 현실감 있는 해상교통 상황의 재현 및 예측을 위해 항해사의 행동양식, 항해전문성, 항해오류 등을 모델링하여 반영하는 것이 필요하다. 본 논문에서는 에이전트 기반의 해상교통 시뮬레이션을 위해서 항해사의 충돌회피를 위한 행동 분석을 수행하였으며, 기초 데이터의 확보를 위해 설문조사를 실시하였다. 설문조사를 통해 분석된 정보를 이용하여 선박 충돌상황에서 항해사의 행동과 유사한 에이전트 기반의 항해행동 모델을 개발하였으며, 해상교통분석 시뮬레이션 플랫폼의 개발을 위해 활용될 것이다.
과거에는 평지에서의 전투가 대부분이었고 단순한 병력 크기가 전투 승패에 큰 영향을 주었다. 1차대전 이후 숲, 도심, 정글 등과 같은 다양한 지형에서 전투를 치루기 때문에 지상전에서 지형요소는 무기체계와 함께 전투에 큰 영향을 미친다. 지금까지 전투에서 지형의 영향은 정성적으로만 설명되었으며 워게임, 교전시뮬레이션에서는 전투요소들의 능력치들을 낮추는 방법을 적용하였다. 본 연구에서는 프랙탈 차원을 이용하여 지형의 영향을 평가하는 방법을 제시하고자 한다. 연구 방법으로 정량적인 지형의 영향도를 구하기 위해 Box Counting Dimension 계산을 이용한 프랙탈 차원 값과 지형의 밀도를 특성 값으로 정하였다. 또한 에이전트 기반 시뮬레이션인 EINSTein 모델에서 구한 전투 결과를 바탕으로 프랙탈 차원과 밀도에 대한 상관도를 분석하였으며 과거 전투 사례 중 '스탈린그라드 전투' 결과와 비교하여 분석하였다. 본 연구는 정성적으로 설명되던 지형의 영향을 프랙탈 차원을 이용하여 정량화함으로써 새로운 전투효과도 평가방법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.