
http://dx.doi.org/10.9709/JKSS.2015.24.4.077

ISSN 1225-5904

제24권 제4호 2015년 12월 77

Simulated Annealing for Two-Agent Scheduling Problem with

Exponential Job-Dependent Position-Based Learning Effects

Jin Young Choi*

작업별 위치기반 지수학습 효과를 갖는 2-에이전트 스케줄링 문제를 위한

시뮬레이티드 어닐링

최진영*

ABSTRACT

In this paper, we consider a two-agent single-machine scheduling problem with exponential job-dependent

position-based learning effects. The objective is to minimize the total weighted completion time of one agent with

the restriction that the makespan of the other agent cannot exceed an upper bound. First, we propose a branch-and-

bound algorithm by developing some dominance /feasibility properties and a lower bound to find an optimal solution.

Second, we design an efficient simulated annealing (SA) algorithm to search a near optimal solution by considering

six different SAs to generate initial solutions. We show the performance superiority of the suggested SA using a

numerical experiment. Specifically, we verify that there is no significant difference in the performance of 

between different considered SAs using the paired -test. Furthermore, we testify that random generation method is

better than the others for agent , whereas the initial solution method for agent  did not affect the performance

of  .

Key words : Two-Agent Scheduling, Exponential Learning Effect, Job-Dependent Position-Based Processing Time,

Total Weighted Completion Time, Makespan, Branch-And-Bound Algorithm, Simulated Annealing

요 약

본 논문은 작업별 위치기반 지수학습 효과를 갖는 2-에이전트 단일기계 스케줄링 문제를 고려한다. 에이전트 는 가중

완료 시간의 합을 최소화하며, 에이전트 는 총소요시간에 대한 상한 값을 만족하는 조건을 갖는다. 본 연구에서는 먼저 우수

해/가능해에 대한 특성을 개발하고, 이를 이용하여 최적 해를 찾기 위한 분지한계 알고리즘을 설계한다. 또한 근사 최적 해를

구하기 위해 6가지 다른 초기해 생성 방법을 이용한 시뮬레이티드 어닐링 알고리즘을 제안한다. 수치 실험을 통해 제안된 알고

리즘의 우수한 성능을 검증한다. 실험 결과, 다른 초기해 생성 방법들 간에는  차이가 유의하게 발생하지 않았으며,

에이전트 의 작업 순서를 무작위로 생성할 때 성능이 좋아짐을 발견하였다. 반면에, 에이전트 의 초기해 생성 방법은 성능

에 영향을 미치지 않았다.

주요어 : 2-에이전트 스케줄링, 지수 학습효과, 작업별 위치기반 처리시간, 가중 완료 시간의 합, 총소요시간, 분지 한계

알고리즘, 시뮬레이티드 어닐링

Received: 28 August 2015, Revised: 8 December 2015,

Accepted: 10 December 2015

*Corresponding Author: Jin Young Choi

E-mail: choijy@ajou.ac.kr

An abridged version of this article was presented at the

MISTA 2015 Conference (Choi, 2015).

1. Introduction

Two-agent single-machine scheduling problem can be

found in various industrial applications where two agents

compete for a single common machine to achieve their

respective objectives. For example, we can consider a

Vol. 24, No. 4, pp. 77-88 (2015. 12)

한국시뮬레이션학회 논문지

Jin Young Choi

78 한국시뮬레이션학회 논문지

production system under maintenance planning. The

production department (agent) wants to operate the system

without any idle time in order to maximize the system

utilization. On the other hand, the maintenance department

(agent) calls for frequent pauses of the production system

in order to reduce the number of unexpected breakdowns

of the system. Therefore, two departments (agents) share

the production system, while pursuing different objective

functions. Another example of the two-agent scheduling

problems is the case of a classical problem in air traffic

management for scheduling aircraft landings on a given

set of runways. If two airlines (agents) have different

performance measures such as safety and quality of service,

each airline (agent) is definitely interested in maximizing

the frequency cleaning/ checking the runways and minimizing

the delay of the corresponding flights, respectively, in

order to maximize the satisfaction of its own passengers

(Agnetis, 2012).

This problem is a special case of general single-agent

bi-criteria optimization model (Agnetis et al., 2004) because

all jobs contribute to both objectives, and a key issue is to

determine the non-dominated schedules for each objective

in a sense that a better schedule for one objective makes

the other objective worse. Furthermore, this problem has

some characteristics as follows: (i) two objectives correspond

to different two agents having their own jobs to process,

(ii) they compete on the usage of a common processing

resource, (iii) each agent has different performance measure,

and (iv) only the jobs pertaining to one agent contribute to

the computation of the objective function for itself.

Therefore, a typical methodology for simple single-agent

bi-criteria optimization models such as using weighted

objective functions of two agents cannot be applied, and

the complexity of it is higher than that by simple single-

agent bi-criteria scheduling problem (Agnetis et al., 2004),

necessitating a new systematic approach.

Of particular interest is a two-agent single-machine

scheduling problem with exponential job-dependent position-

based learning effect. This means that each job has its own

learning effect, implying that the learning in the production

process of some jobs is faster than those of others.

Moreover, the actual processing time of a job is expressed

as an exponential decreasing function of learning effect

and processing sequence. For example, performing similar

tasks repeatedly can improve the skills of workers so that

they can perform setups and handle raw materials faster,

while reducing the actual processing time. This modeling

concept is a plausible scenario in real-life manufacturing

environment, deserving some attention.

However, to the best of our knowledge, in the literature

there has been no research works on this specific issue

considering two-agent, position-dependent, and job-dependent

learning effect, simultaneously, whereas there were some

works on simpler cases considering position-dependent

processing times (learning/ aging) for two-agent or job-

dependent learning effect for single agent as follows;

Since the concepts of the two-agent single-machine scheduling

problem was first introduced by Baker and Smith (2003),

many research works have been conducted on this topic,

while learning/aging effect in a single-agent scheduling

problem were firstly introduced by Biskup (1999) and

Mosheiov (2001), respectively. Readers can find an extensive

survey on scheduling problems with learning effects in

Biskup (2008). Mosheiov (2005) showed that a V-shaped

schedule is optimal for the problem of minimizing flowtime

in a single-machine case. Kuo and Yang (2008) solved a

single-machine scheduling problem with the cyclic process

of an aging effect. Chang et al. (2009) worked on single-

machine scheduling problems with a common due date

under learning/aging effect consideration.

Meanwhile, two-agent scheduling problems with position-

dependent processing times have received considerable

attention in recent years, where actual processing times

can be represented by using a linear function or an expo-

nential function. Liu et al. (2010), Lee et al. (2010), Liu et

al. (2011), and Wu et al. (2013) considered a linear

function for computing actual processing times. On the

other hand, Cheng et al. (2011), Wu et al. (2011b), and Li

and Hsu (2012) applied an exponential function to represent

actual processing times. All of these works took into

account different performance objectives for two agents,

which are functions of completion times such as (weighted)

sum of tardiness, (weighted) sum of completion times,

lateness, the number of tardy jobs, or upper bound of

makespan, and so on.

Regarding the modeling concept of job-dependent learning

Simulated Annealing for Two-Agent Scheduling Problem with Exponential Job-Dependent Position-Based Learning Effects

제24권 제4호 2015년 12월 79

effect, it was suggested by Cheng and Wang (2000) for the

first time. Mosheiov and Sidney (2003) studied a job-

dependent learning curve where the learning of some jobs

is faster than those of others. Then, Bachman and Janiak

(2004) investigated a learning effect formulation on the

single-machine case, and Wang and Xia (2005) extended

it to multiple-machine case for a flow-shop consisting of

an increasing series of dominating machines. However,

they did not consider a two-agent case competing for a

common resource.

Motivated by these remarks, in this paper, we inve-

stigate a rather general problem, where two agents are

included with an exponential position-based and job-

dependent learning effect, while competing for a common

single machine. In the context of the operational framework,

we call it a two-agent single-machine scheduling problem

with exponential job-dependent position-based learning

effect. The objective is to minimize the total weighted

completion time of one agent with the restriction that the

makespan of the other agent cannot exceed an upper

bound. We suggest some dominance and feasibility properties

for a branch-and-bound algorithm (B&B), which can be

used to find optimal solutions and to compare effectiveness

of other algorithms considered. Furthermore, we design an

efficient simulated annealing (SA) algorithm to search a

near optimal solution and show its superiority of performance

by using a numerical experiment.

The remainder of this paper is organized as follows. In

the next section, we define the problem formally and suggest

several dominance and feasibility properties related to the

B&B algorithm. In Section 3, we design an efficient

simulated annealing algorithm to obtain near-optimal

solutions. The computational experiments are conducted

in Section 4 and we conclude our discussion by suggesting

some future works in Section 5.

2. Problem definition and a

branch-and-bound algorithm

2.1 Problem definition

Two agents  and  have sets of jobs 

 ⋯ 

 , 
  ⋯ 

  to process,

respectively, while competing for a single common machine.

The objective of agent  is to minimize the total weighted

completion time and agent  wants to keep the makespan,


max

 , less than an upper bound . Each job for agent  is

assigned with a weight 
 and a normal processing time


 ≤ ≤ 


. Each job for agent  has a normal

processing time 
  ≤ ≤ 


. All jobs have job-

dependent and position-based learning effect, so that

actual processing time of job 
∈ processed at

the th position in a sequence, 
 , can be expressed as

an exponential decreasing function 
  

∙




,

where 
  is a learning ratio of job 

∈.

Then, using the three-field notation 


 suggested by

Graham et al. (1979), where  is the number of machines,

 denotes job characteristics, and  describes objective

functions, the scheduling problem under consideration

can be represented as

 
  






 
   







  







 
max

 ≤

 (1)

where 
 is the completion time of job 

. Agnetis et

al. (2004) showed that  
  







  
max

 ≤ is binary

NP-hard. It implies that our problem in Eq. 1 is at least

binary NP-hard, and we need an efficient solution approach

to solve it. In our work, we suggest a B&B algorithm to

obtain an optimal solution, and a simulated annealing

algorithm for a near optimal solution.

2.2 Properties and a lower bound for a

branch-and-bound algorithm

For a B&B approach, we first develop four dominance

properties based on a pairwise interchange comparison

method as follows. Suppose that we have two schedules

 and  s.t. 
  

 
 ′ and 

  
 

 ′,

where  is a scheduled part of  jobs and ′ is a

unscheduled part of  jobs. Hence, jobs 
 and


 are in the th and  th positions in , respectively.

 can be obtained by interchanging two jobs 
 and 



Jin Young Choi

80 한국시뮬레이션학회 논문지

in . By defining  as the completion time of the last job

in , we can compute the completion times of jobs 
 and


 as




  


 


 


  


 





 





  


 





  


 





 




Let us assume that we just sequenced 
 after  and are

about to arrange 
, resulting in schedule . Then, we

can derive certain conditions under which schedule  is

dominated by schedule . Specifically, we need two

conditions for two agents such that (i)  has smaller total

weighted completion time for agent  than that of , and

(ii) the makespan of agent  satisfies the upper bound

condition. In addition, we need one more condition such

that 


 


 , implying that we can keep the

dominance of  over  after arranging jobs in ′ in later

steps. By defining 
  


, we have the following

properties.

(Property 1) For 

∈

 

∈

,

if









 


≤








min


























 








 


,

then  dominates .

Proof: Since 
 


∈

, the first condition is









 ≤ 







⇔ 














 















≤

Therefore, we have













≤⇔








≤



 (2)

















≤

⇔








≥














 (3)

From 
 

 , we have


 









 










⇔



























  





 (4)

Since there is no job for agent  , we do not need the make-

span condition for agent  . From Eqs. 2-4,  dominates ,

if









 


≤








min


























 








 


.

Three further properties can be proved in a similar

manner to Property 1.

(Property 2) For 

∈


 


∈

 ,

if 



























 
 


and  








 

 


≤,

then  dominates .

(Property 3) For 

∈


 


∈

,

if 












 

 




 



and 


 


≤, then  dominates .

(Property 4) 

∈


 


∈

 ,

if









 


≤








min


























 








 


,

then  dominates .

Moreover, we have three more feasibility properties of

a sequence as follows. Suppose that we have a sequence of

jobs   , where  represents a sequence of  jobs

scheduled and  is a set of  jobs unscheduled. In

addition, let    and    be the last th job scheduled

and the completion time of it, respectively. Then, the

following properties can be proved easily using the

objective function requirement of agent  .

(Property 5) If    

with   ∈
 and ∩

≠∅,

then the sequence   is non-promising.

Simulated Annealing for Two-Agent Scheduling Problem with Exponential Job-Dependent Position-Based Learning Effects

제24권 제4호 2015년 12월 81

(Property 6) If    

with   ∈
,

then the sequence   is non-promising.

(Property 7) If    ≤ ∩
≠∅,

and    min  ,

then the sequence   is non-promising, where

min  is the minimum actual processing time by

any job in  at the  th position.

Based on these properties, we can apply a B&B algorithm

to find an optimal solution (Hillier and Lieberman, 2015).

A node represents a partial or complete schedule and the

initial node is empty, denoting none of jobs is scheduled.

Then, we can assign any job in the first position in a

sequence and select a job for the second position, and so

on. This is called a branching process. Hence, the basic

idea is to branch a node into several nodes, each

corresponding to scheduling one available job at that time

point, and bound it by computing the potential minimum

value of the total weighted completion time, called a lower

bound, for agent , which can speed up the search

procedure.

(Lemma 1) Suppose that there are   jobs for agent

 in  so that their weights can be sorted in a non-

increasing order, as 
 ≥

 ≥⋯≥


 . Then, a

lower bound of 
  







 for a sequence    

corresponding to the state assigning only jobs in  is

 
  



 

 

 
  







 (5)

where   


, and  
 and  

 denote the

weight and the completion time of the job scheduled in the

th order among  jobs for agent  in , respectively.

Furthermore,  
 denotes the estimated minimum

completion time of a job that can be scheduled in the th

order among  jobs for agent  in .

Proof: The first term in Eq. 5 computes the sum of

weighted completion times of jobs for agent  already

scheduled. In the second term, without loss of generality,

completion times,  
 , are an increasing function of the

processing sequence, and  
 s' are decreasing function.

Therefore, 
  



 

 

 is minimized (Hardy et al., 1967),

providing a lower bound for  .

For a given schedule  , we suggest an efficient method

to calculate 
 in Eq. 5 as follows.

1. Identify the minimum actual processing times at the

positions from  th to th in  , while allowing

to select them from same jobs in .

2. Calculate completion times at those positions using

the minimum actual processing times, denoted by

    ⋯  .

3. Assign  jobs for agent  to first  positions and

  jobs for agent  to following  

positions.

4. If    , adjust the sequence of 

jobs to satisfy the upper bound condition for agent B

as follows. Otherwise, go to (5).

 (a) Check the upper bound condition of agent  's

jobs from the th job in a backward manner.

 (b) Whenever a job does not satisfy the upper bound

condition, find one preceding last job for agent 

and interchange with it.

 (c) Update  as , where


 is the minimum

actual processing time of the selected agent  's

job for interchanging.

 (d) Repeat (b) and (c) until we find first agent  's job

satisfying the upper bound condition, or there is

no more jobs to consider.

5. Stop with the minimum completion times of  jobs

for agent .

3. Design of SA using different

initial solutions

As an efficient solution approach to find a near optimal

solution, in this section, we suggest a simulated annealing

(SA) algorithm, that was proposed by Kirkpatrick et al.

Jin Young Choi

82 한국시뮬레이션학회 논문지

(1983). It is one of the most popular meta-heuristics used

to solve combinatorial optimization problems based on

trajectory search procedure. It starts from an initial trial

solution and explores the solution space by taking steps in

random direction, while accepting some deteriorating

steps probabilistically. Therefore, it can escape from a

local optimum and increase the possibility to find a better

solution. As the algorithm proceeds, it focuses on the

feasible region that might contain an optimal solution. The

main features of the algorithm can be described as follows.

Objective function : During the search procedure, we

evaluate a trial solution under consideration using the

objective function for agent , which is to minimize the

total weighted completion time of jobs for agent . We

represent the objective function value for the current trial

solution and next trial solution as  and , respectively.

Initial solution : Since we need to generate a feasible

initial solution and the upper bound condition for agent 

affects the feasibility of a solution under consideration, we

first arrange the jobs for agent  ahead in generating an

initial solution, to make 
max

 as small as possible,

following the jobs for agent . We can consider different

methods to make the partial sequences for the two agents.

Specifically, we consider three methods to arrange jobs

for agent  such as (i) 
 = random order, (ii) 

 =

shortest normal processing time (SPT) order, and (iii) 
 =

shortest weighted normal processing time (WSPT) order.

This is because the objective of agent  is to minimize the

total weighted completion time, and it might be achieved

by arranging jobs based on the information of (weighted)

normal processing times. In the case of scheduling jobs for

agent  , we suggest two methods to order jobs for agent

 such as (i) 
 = random order and (ii) 

 =

non-decreasing order of 
. Therefore, we can consider

 ×    different methods to generate an initial solution.

Neighborhood generation : For a given trial solution,

we select two jobs randomly and interchange them to

generate next trial solution. After computing 
max

 of new

sequence generated, we check the upper bound condition

for agent  . If it is feasible, we call it next trial solution.

Otherwise, we reapply this procedure until we get a

feasible one.

Move selection : Using the next trial solution, we

compute the objective function and get . If   , we

accept it and update the current trial solution with it.

Otherwise, we can accept it with the acceptance probability

defined as

  








 (6)

where  is a control parameter, called the temperature,

which can change the tendency to accept a worse solution

than the current one. If   , the exponent part of Eq. 6

becomes negative, making  in the range 0-1 as the

probability. If it is rejected, then we repeat from the

neighborhood generation step.

Temperature schedule : We notice that we can change

the value of  to control the acceptance probability. Since

 becomes large as the value of  is large, we can make

the search of SA to perform in random direction by setting

a large value of  at the early stage, whereas we can focus

on a special region by using small value of  at the later

stage of the algorithm. Based on this idea, we can design

how to change the temperature, called the temperature

schedule. First, we set the initial temperature using the initial

objective function value as    ×       .

Then, after performing a fixed number of iterations  at

, we decrease the value of  by   × ,

represented as    ×      . We can repeat

this procedure for a fixed number of steps  , which is the

number of times we change the temperature. Hence, the

temperature schedule can be expressed as    ×

    ⋯ .

Terminating condition : We terminate the algorithm

after a fixed number of iterations defined as ×.

Simulated Annealing for Two-Agent Scheduling Problem with Exponential Job-Dependent Position-Based Learning Effects

제24권 제4호 2015년 12월 83

4. A numerical experiment

4.1 Design of a numerical experiment

We designed a numerical experiment to evaluate the

performance of the suggested B&B algorithm and six

different 

 


     , using different

methods in the generation of the initial solution as follows.

First, we considered four different values of  as   

   with 


 

. The value of  was set by

   
min


max

, where 
min

 and 
max

 are the

minimum and maximum value of the makespan that can

be made using all jobs for agent  , respectively, and

      is a real-valued parameter. We considered

three different values of  as     . We

computed the value of 
max

 as the sum of normal

processing times of jobs for agent  and 
min

 as the sum

of minimum actual processing times at first 

 positions

in a sequence by allowing duplicated selection of jobs.

We performed a pre-testing of SA by generating some

simple scheduling problems using     and   

 . More precisely, for each configuration of

  , we generated 30 problem instances using normal

processing times and job weights randomly generated in

the range    , and learning effects randomly generated

in the range  . We solved problem instances using six

SAs, and compared the performance of the SAs using

 defined as

  
 

  
 


× 

where  is the total weighted completion time,

and 
 

       represents the SA

using 
 and 

 as initial solution methods for agent 

and agent  , respectively, as defined in Section 3. Using

the pre-testing results, we set the parameter values of SA

to          ×    .

As a relative comparison method of the performance of

different SAs, we defined the relative deviation percentage

(RDP) of 
 

 as


 
min    

  
 


 × .

We can calculate this performance measure by computing

one RDP for each problem instance and compiling statistics

such as mean, maximum, or standard deviation.

4.2 Experimental results

For each configuration of   and the solution method,

we generated 50 problem instances using the same parameter

ranges and solved them using the B&B algorithm and six

different SAs, 
 

       . For

each combination of   and B&B (or 
 

),

we calculated the mean, standard deviation (stdev), and

maximum (max) number of generated nodes, CPU time

(in seconds), and   as in Table 1. Because small

value of  decreases the value of , it generates a tight

upper bound for agent  and makes B&B difficult to find

an optimal solution, which were expressed as increasing

values of node number and CPU time at   ,

compared to other values of  , for a fixed value of . The

number of generated nodes and CPU time of B&B

increased exponentially as  increases. Specifically, B&B

took a mean of 218,321.058 s (60.64 h) to find an optimal

solution for the largest system     .

The SAs showed good performance because they had

low   in almost all configurations of   with a

mean of less than 2%. The CPU time is within 1.1 s in all

configurations, that is obviously favorable over that of

B&B in environments requiring real-time scheduling. The

CPU times were not affected by the size  of problem

instances because the CPU times were increased linearly

as  increases for a fixed value of  . However, we could

not see any linear relationship between the CPU times and

the value of  for a fixed value of . This can imply that

the tightness of upper bound  for agent  does not affect

the computation time of SA procedure.

The performance difference of the proposed SAs in

terms of   was compared statistically by applying

the paired -test. After denoting the difference of the th

paired values of   for two considered SAs, (for

example, 
 

 vs. 
 

), as  , we

Jin Young Choi

84 한국시뮬레이션학회 논문지

Table 1. Results of numerical experiments (CPU time in s)

computed the sample mean difference  and sample

standard deviat ion 

, as 








  





 and 












  








. By the Central Limit Theorem (Hayter,

1996),  has a normal distribution with unknown

variance and hence, the test statistic  defined as

 




 
 (7)

has a -distribution with 49 degrees of freedom. Then,

we can perform the -test by constructing the hypotheses

set 
 


 

 

≠, where the hypothesis


 


≠ represents the tested assumption that the

performance difference of the two considered SAs is

significant. Table 2 displays the -values computed by Eq.

7 for the paired -test. The first row is the combination of

indexes representing the initial solution generation methods

as defined in Section 3. Hence, each of them denotes two

Simulated Annealing for Two-Agent Scheduling Problem with Exponential Job-Dependent Position-Based Learning Effects

제24권 제4호 2015년 12월 85

Table 2. -values for paired -test

SAs considered for the paired -test. For example, the

value (11,12) in the third column represents two SAs using


 

 and 
 

 . Columns 3-17 are 

-values using  as the difference of the th paired values

of   for two SAs using the initial solution

generation methods defined in the corresponding first

row.

The rejection region of  with a confidence level of

95% is     . As the -test result, we could

notice that almost every -values are less than 2.0 except 5

of the 150 cases, resulting in accepting 
 


 in

almost cases. More specifically, only 4 of the 12  

configurations had at most one or two -values larger than

2.0 representing the significance of performance difference

for SAs. Therefore, we could argue that the performance

differences of all SAs considered are not significant.

However, we may differentiate the performance of

SAs for each configuration   using the -values as

follow. If we consider two SAs using 


 



  and




 



  , positive -value in Table 2 implies that the

  by SA using 


 



  is larger than that by

SA using 


 



  , which is equivalent to that SA using




 



  is better than that using 


 



  .

Based on these argument, we can identify the best SA for

each configuration as follows; (  , index for ) = (10,

0.25, 11), (10, 0.50, 22), (10, 0.75, 31), (12, 0.25, 11), (12,

0.50, 32), (12, 0.75, 32), (14, 0.25, 11), (14, 0.50, 12), (14,

0.75, 12), (16, 0.25, 21), (16, 0.50, 31), (16, 0.75, 12),

where  is the abbreviation of initial solution.

We calculated the mean, standard deviation, and maximum

values of the RDP for six SAs (i.e., 
 


      as in Table 3. From the RDP values,

we could verify the relative performance differences by

identifying the best SA as above. Furthermore, we could

argue that random generation method is better than the

others for agent  because it was prominent in 6 of the 12

configurations, whereas SPT and WSPT were 2 and 4,

respectively. The initial solution method for agent  did

not affect the performance of   because both

methods (i.e., random and non-decreasing) had same

number of best cases (6 in the 12 configurations).

5. Conclusions

In this paper, we considered the two-agent single-

machine scheduling problem with exponential job-dependent

position-based learning effects. The objective was to

minimize the total weighted completion time of one agent

with the restriction that the makespan of the other agent

cannot exceed an upper bound. First, we suggested a B&B

algorithm by developing some dominance/feasibility properties

and a lower bound to find an optimal solution. Second, we

designed an efficient simulated annealing (SA) algorithm

to search a near optimal solution by considering six

different SAs to generate initial solutions. We showed the

Jin Young Choi

86 한국시뮬레이션학회 논문지

Table 3. Relative deviation percentages of SAs

performance superiority of the suggested SA using a

numerical experiment.

Using the paired -test, we verified that there is no

significant difference in the performance of  

between different SAs. However, we could notice that

random generation method is better than the others for

agent , whereas the initial solution method for agent 

did not affect the performance of  . Furthermore,

because the CPU time by SAs, pretty faster than that by

B&B, was not affected by the size  of problem instances

and the tightness of upper bound  for agent  did not

affect the computation time of SA procedure, we can

Simulated Annealing for Two-Agent Scheduling Problem with Exponential Job-Dependent Position-Based Learning Effects

제24권 제4호 2015년 12월 87

apply the suggested SAs in environments requiring real-

time scheduling.

As the direction of future research, we can extend the

current problem to the case of multi-agent scheduling

problems with more than two agents. Moreover, we can

consider due date in performance measure, represented as

minimizing tardiness, weighted tardiness, or the number

of tardy job. Because keeping due date can reflect the

service level to the customer, this may be a very important

issue in industry. We can also think of multi-machine

scheduling problems with multi-agent, where we have to

maintain information on the completion times of the jobs

at each machine as the processing steps proceed, making

the problem more challenging.

References

1. Agnetis, A. (2012), “Multiagent scheduling problems”,

Tutorials in Operations Research, Informs 2012, pp.

151-170.

2. Agnetis, A., Mirchandani, P.B., Pacciarelli, D., and Pacifici,

A. (2004), “Scheduling problems with two competing

agents”, Operations Research, 52(2), pp. 229-242.

3. Bachman, A. and Janiak, A. (2004), “Scheduling jobs

with position-dependent processing times”, Journal of

the Operational Research Society, 55, pp. 257-264.

4. Baker, K.R. and Smith, J.C. (2003), “A multiple-criterion

model for machine scheduling”, Journal of Scheduling,

6, pp. 7-16.

5. Biskup D. (1999), “Single-machine scheduling with learning

considerations”, European Journal of Operational Research,

115, pp. 173-178.

6. Biskup, D. (2008), “A state-of-the-art review on scheduling

with learning considerations”, European Journal of

Operational Research, 188(2), pp. 315-329.

7. Chang, P.C., Chen, S.H., and Mani, V. (2009), “A note

on due-date assignment and single machine scheduling

with a learning/aging effect”, International Journal of

Production Economics, 117, pp. 142-149.

8. Cheng, T.C.E. and Wang, G. (2000), “Single machine

scheduling with learning effect considerations”, Annals

of Operations Research, 98, pp. 273-290.

9. Cheng, T.C.E., Wu, W.H., Cheng, S.R., and Wu, C.C.

(2011), “Two-agent scheduling with position-based

deterioration jobs and learning effects”, Applied

Mathematics and Computation, 217, pp. 8804-8824.

10. Choi, J.Y. (2015), “An efficient simulated annealing for

two-agent scheduling with exponential job-dependent

position-based learning consideration”, In the proceeding

of the MISTA 2015 Conference, Prague, Czech Republic.

11. Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy,

Kan AHG. (1979), “Optimization and approximation in

deterministic sequencing and scheduling theory: a survey”,

Annals of Discrete Mathematics, 5, pp. 287-326.

12. Hardy, G., Littlewood, J., and Polya, G., Inequalities.

London: Cambridge University Press, 1967.

13. Hayter, A. J., Probability and Statistics, International

Thomson PUB, 1996.

14. Hillier, F.S. and Lieberman, G.J., Introduction to Operations

Research, McGraw Hill, 2015.

15. Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983).

“Optimization by simulated annealing”, Science, 220,

pp. 671-680.

16. Kuo, W.H. and Yang, D.L. (2008), “Minimizing the

makespan in a single-machine scheduling problem with

the cyclic process of an aging effect”, Journal of the

Operational Research Society, 59, pp. 416-420.

17. Lee, W.C., Wang, W.J, Shiau, Y.R., and Wu, C.C.

(2010), “A single-machine scheduling problem with

two-agent and deteriorating jobs”, Applied Mathematical

Modelling, 34, pp. 3098-3107.

18. Li, D.C. and Hsu, P.H. (2012), “Solving a two-agent

single-machine scheduling problem considering learning

effect”, Computers & Operations Research, 39, pp.

1644-1651.

19. Liu, P., Zhou, X., and Tang, L. (2010), “Two-agent

single-machine scheduling with position-dependent processing

times”, International Journal of Advanced Manufacturing

Technology, 48, pp. 325-331.

20. Liu, P., Yi, N., and Zhou, X. (2011), “Two-agent

single-machine scheduling problems under increasing

linear deterioration”, Applied Mathematical Modelling,

35, pp. 2290-2296.

21. Mosheiov, G. (2001), “Parallel machine scheduling with

a learning effect”, Journal of the Operational Research

Society, 52, pp. 1165-1169.

22. Mosheiov, G. (2005), “A note on scheduling deteriorating

jobs”, Mathematical and Computer Modelling, 41, pp.

883-886.

23. Moshiov, G. and Sidney, J. B. (2003), “Scheduling with

general job-dependent learning curves”, European Journal

of Operational Research, 147, pp. 665-670.

24. Wang, J.B. and Xia, Z.Q. (2005), “Flow-shop scheduling

with a learning effect”, Journal of the Operational

Jin Young Choi

88 한국시뮬레이션학회 논문지

최 진 영 (choijy@ajou.ac.kr)

1991 한양대학교 산업공학과 학사

1993 KAIST 산업공학과 석사

2004 Georgia Tech 산업및시스템공학과 공학박사

1993∼1999년 한국전자통신연구소 선임연구원

2005∼2007년 삼성네트웍스 부장

2007～현재 아주대학교 부교수

관심분야 : 스케쥴링, 데이터 Analytics, 프로세스 마이닝, 모델링 & 시뮬레이션

Research Society, 56, pp. 1325-1330.

25. Wu, C.C., Huang, S.K., and Lee, W.C. (2011), “Two-agent

scheduling with learning consideration”, Computers &

Industrial Engineering, 61, pp. 1324-1335.

26. Wu, W.H., Xu, J., Wu, W.H., Yin, Y., Cheng, I.F., and

Wu, C.C. (2013), “A tabu method for a two-agent

single-machine scheduling with deterioration jobs”,

Computers & Operations Research, 40, pp. 2116-2127.

