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Simulated Annealing for Two—Agent Scheduling Problem with
Exponential Job—Dependent Position—Based Learning Effects
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In this paper, we consider a two-agent single-machine scheduling problem with exponential job-dependent
position-based learning effects. The objective is to minimize the total weighted completion time of one agent with
the restriction that the makespan of the other agent cannot exceed an upper bound. First, we propose a branch-and-
bound algorithm by developing some dominance /feasibility properties and a lower bound to find an optimal solution.
Second, we design an efficient simulated annealing (SA) algorithm to search a near optimal solution by considering
six different SAs to generate initial solutions. We show the performance superiority of the suggested SA using a
numerical experiment. Specifically, we verify that there is no significant difference in the performance of % errors
between different considered SAs using the paired t-test. Furthermore, we testify that random generation method is
better than the others for agent A, whereas the initial solution method for agent 3 did not affect the performance

of %error.

Key words : Two-Agent Scheduling, Exponential Learning Effect, Job-Dependent Position-Based Processing Time,
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1. Introduction
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production system under maintenance planning. The
production department (agent) wants to operate the system
without any idle time in order to maximize the system
utilization. On the other hand, the maintenance department
(agent) calls for frequent pauses of the production system
in order to reduce the number of unexpected breakdowns
of the system. Therefore, two departments (agents) share
the production system, while pursuing different objective
functions. Another example of the two-agent scheduling
problems is the case of a classical problem in air traffic
management for scheduling aircraft landings on a given
set of runways. If two airlines (agents) have different
performance measures such as safety and quality of service,
each airline (agent) is definitely interested in maximizing
the frequency cleaning/ checking the runways and minimizing
the delay of the corresponding flights, respectively, in
order to maximize the satisfaction of its own passengers
(Agnetis, 2012).

This problem is a special case of general single-agent
bi-criteria optimization model (Agnetis et al., 2004) because
all jobs contribute to both objectives, and a key issue is to
determine the non-dominated schedules for each objective
in a sense that a better schedule for one objective makes
the other objective worse. Furthermore, this problem has
some characteristics as follows: (i) two objectives correspond
to different two agents having their own jobs to process,
(ii) they compete on the usage of a common processing
resource, (iii) each agent has different performance measure,
and (iv) only the jobs pertaining to one agent contribute to
the computation of the objective function for itself.
Therefore, a typical methodology for simple single-agent
bi-criteria optimization models such as using weighted
objective functions of two agents cannot be applied, and
the complexity of it is higher than that by simple single-
agent bi-criteria scheduling problem (Agnetis et al., 2004),
necessitating a new systematic approach.

Of particular interest is a two-agent single-machine
scheduling problem with exponential job-dependent position-
based learning effect. This means that each job has its own
learning effect, implying that the learning in the production
process of some jobs is faster than those of others.
Moreover, the actual processing time of a job is expressed
as an exponential decreasing function of learning effect
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and processing sequence. For example, performing similar
tasks repeatedly can improve the skills of workers so that
they can perform setups and handle raw materials faster,
while reducing the actual processing time. This modeling
concept is a plausible scenario in real-life manufacturing
environment, deserving some attention.

However, to the best of our knowledge, in the literature
there has been no research works on this specific issue
considering two-agent, position-dependent, and job-dependent
learning effect, simultaneously, whereas there were some
works on simpler cases considering position-dependent
processing times (learning/ aging) for two-agent or job-
dependent learning effect for single agent as follows;
Since the concepts of the two-agent single-machine scheduling
problem was first introduced by Baker and Smith (2003),
many research works have been conducted on this topic,
while learning/aging effect in a single-agent scheduling
problem were firstly introduced by Biskup (1999) and
Mosheiov (2001), respectively. Readers can find an extensive
survey on scheduling problems with learning effects in
Biskup (2008). Mosheiov (2005) showed that a V-shaped
schedule is optimal for the problem of minimizing flowtime
in a single-machine case. Kuo and Yang (2008) solved a
single-machine scheduling problem with the cyclic process
of an aging effect. Chang et al. (2009) worked on single-
machine scheduling problems with a common due date
under learning/aging effect consideration.

Meanwhile, two-agent scheduling problems with position-
dependent processing times have received considerable
attention in recent years, where actual processing times
can be represented by using a linear function or an expo-
nential function. Liu et al. (2010), Lee et al. (2010), Liu et
al. (2011), and Wu et al. (2013) considered a linear
function for computing actual processing times. On the
other hand, Cheng et al. (2011), Wu et al. (2011b), and Li
and Hsu (2012) applied an exponential function to represent
actual processing times. All of these works took into
account different performance objectives for two agents,
which are functions of completion times such as (weighted)
sum of tardiness, (weighted) sum of completion times,
lateness, the number of tardy jobs, or upper bound of
makespan, and so on.

Regarding the modeling concept of job-dependent learning
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effect, it was suggested by Cheng and Wang (2000) for the
first time. Mosheiov and Sidney (2003) studied a job-
dependent learning curve where the learning of some jobs
is faster than those of others. Then, Bachman and Janiak
(2004) investigated a learning effect formulation on the
single-machine case, and Wang and Xia (2005) extended
it to multiple-machine case for a flow-shop consisting of
an increasing series of dominating machines. However,
they did not consider a two-agent case competing for a
common resource.

Motivated by these remarks, in this paper, we inve-
stigate a rather general problem, where two agents are
included with an exponential position-based and job-
dependent learning effect, while competing for a common
single machine. In the context of the operational framework,
we call it a two-agent single-machine scheduling problem
with exponential job-dependent position-based learning
effect. The objective is to minimize the total weighted
completion time of one agent with the restriction that the
makespan of the other agent cannot exceed an upper
bound. We suggest some dominance and feasibility properties
for a branch-and-bound algorithm (B&B), which can be
used to find optimal solutions and to compare effectiveness
of other algorithms considered. Furthermore, we design an
efficient simulated annealing (SA) algorithm to search a
near optimal solution and show its superiority of performance
by using a numerical experiment.

The remainder of this paper is organized as follows. In
the next section, we define the problem formally and suggest
several dominance and feasibility properties related to the
B&B algorithm. In Section 3, we design an efficient
simulated annealing algorithm to obtain near-optimal
solutions. The computational experiments are conducted
in Section 4 and we conclude our discussion by suggesting
some future works in Section 5.

2. Problem definition and a
branch—and—bound algorithm

2.1 Problem definition
Two agents A and B have sets of jobs J4=
{¢]1A7 ¢]2A, J4 } JB: {‘]137 :]237'”7 1]773;}} to process,

4

respectively, while competing for a single common machine.
The objective of agent A is to minimize the total weighted
completion time and agent B wants to keep the makespan,

C,.« » less than an upper bound U. Each job for agent A4 is
assigned with a weight w:' and a normal processing time
p',1 < i < n,. Each job for agent B has a normal
processing time pf, 1< j<ng All jobs have job-
dependent and position-based learning effect, so that

actual processing time of job .J*, X& { 4, B} processed at

the rth position in a sequence, p:* (), can be expressed as
an exponential decreasing function p;*(r) = p;* « 7-7b’A,
where b > 0 is a learning ratio of job J*, X {4, B}.
Then, using the three-field notation ¥, [@,|¥, suggested by
Graham et al. (1979), where ¥, is the number of machines,
W, denotes job characteristics, and ¥, describes objective
functions, the scheduling problem under consideration

can be represented as
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where C is the completion time of job .J!. Agnetis et
al. (2004) showed that 1]| E wlCh: G < Uis binary

NP-hard. It implies that our problem in Eq. 1 is at least
binary NP-hard, and we need an efficient solution approach
to solve it. In our work, we suggest a B&B algorithm to
obtain an optimal solution, and a simulated annealing
algorithm for a near optimal solution.

2.2 Properties and a lower bound for a
branch—and—bound algorithm

For a B&B approach, we first develop four dominance

properties based on a pairwise interchange comparison

method as follows. Suppose that we have two schedules

Sy and S, s.t. S, = (m, J5, 5 7') and S, = (m, J¥, J¥, ),

where 7 is a scheduled part of (r—1) jobs and 7" is a

unscheduled part of (n—r—1) jobs. Hence, jobs ./ and
J:* areinthe rthand (r+ 1) th positions in .S, respectively.

S, can be obtained by interchanging two jobs ./ and J]-X
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in .S). By defining ¢ as the completion time of the last job
in 7, we can compute the completion times of jobs .J* and

J,].X as

X X X
G =t+pir ", s =t4+p " pi 1)

X X X
Q(%):t+7)fT b’,C;(SZ):t+p;(7' b’+pf((7“+1) b,

Let us assume that we just sequenced JjX after 7 and are
about to arrange ./, resulting in schedule S,. Then, we
can derive certain conditions under which schedule .5, is
dominated by schedule 5. Specifically, we need two
conditions for two agents such that (i) .5, has smaller total
weighted completion time for agent A than that of .9,, and
(ii) the makespan of agent B satisfies the upper bound
condition. In addition, we need one more condition such
that C(5,) < C/(S,), implying that we can keep the
dominance of S, over .5, after arranging jobs in 7" in later
steps. By defining X% = b — bf(, we have the following

properties.

X 74 7X= 74
(Property 1) For J7€J%, JSE€J7,

b.r"l I)A
(r+1) P—pl | sm
K
bA 7 b

wA A
if —- (r+1) R min{l, -
(r+1)" —

w! v

i

then S, dominates .5,.
Proof: Since JZX, J]-X € J, the first condition is
wiCA(S,) +wAC‘4(S ) < w(S,) +wlcA(S,)

<:><w +ws )(pl p] -y

/ Y
+ {wjpj (r+1) g —wfpf(r—b—l) " }S 0.

Therefore, we have

A A p A4
p;f‘r b *p;lr V< O<:>—l4< p ?2)
P;
4 _
wip; (r+1) 7 —wipl(r+1) " <0 3)
A A
D; wj
&> (r+1)
A=A

pﬂrﬁb}q—( }<pj[ —(r+1) bf] “4)
o [<r+1>b> = GRS
P; (1) =

Since there is no job for agent 3, we do not need the make-
span condition for agent 3. From Egs. 2-4, .S, dominates .5,
if —- w (1) < i< min{l, LG8 K 1)}7; = Tb_; }rw.
w! v (r41)% ="

Three further properties can be proved in a similar
manner to Property 1.

(Property 2) For J*€ J4, 7Y€ J”,

bB

A
. AP +1 ”‘5
lf(z)—B<—(T > e +1)]”

P (r+1)" -
and (ii) t+p/r " +p2 641" < 0,

then S, dominates .5,.

(Property 3) For J*€ J7, Y€ 4,

el b
r+1 !

" < U, then S, dominates S,.

B
i
A

if (i)

and (i)t +pPr-

X 7B X 7B
(Property 4) J-EJ7, JSE T,

(r+ 1)1)1’7—rbf7 o
be WP s
(r+1)" —r

. LUB 58 pB
if L (r+1)" <
uf 7

i

—< mm{l

then S, dominates .5,.

Moreover, we have three more feasibility properties of
a sequence as follows. Suppose that we have a sequence of
jobs §=(m,
scheduled and 7° is a set of (n— k) jobs unscheduled. In
addition, let 7, and ;) be the last kth job scheduled

and the completion time of it, respectively. Then, the

7°), where 7 represents a sequence of k jobs

following properties can be proved easily using the
objective function requirement of agent B.

(Property 5)If Cp,) < U
with ;€4 and (r°N J7) = @,

then the sequence (7r7 77“) is non-promising.
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(Property 6) If C,) > U
with T (k] & JB,

then the sequence (71', 7r“) is non-promising.

(Property 7) If Cyyy < U (x°NJ%) = &,

and C() +p™" (k+1) > U,

then the sequence (m, 7€) is non-promising, where
p™ (k+1) is the minimum actual processing time by

any job in 7° at the (k+ 1)th position.

Based on these properties, we can apply a B&B algorithm
to find an optimal solution (Hillier and Lieberman, 2015).
A node represents a partial or complete schedule and the
initial node is empty, denoting none of jobs is scheduled.
Then, we can assign any job in the first position in a
sequence and select a job for the second position, and so
on. This is called a branching process. Hence, the basic
idea is to branch a node into several nodes, each
corresponding to scheduling one available job at that time
point, and bound it by computing the potential minimum
value of the total weighted completion time, called a lower
bound, for agent A, which can speed up the search

procedure.

(Lemma 1) Suppose that there are n, > 0 jobs for agent
A in 7° so that their weights can be sorted in a non-
increasing order, as w(‘b > wé) > > wélz). Then, a
lower bound of iwf‘ CA(S) for a sequence 5= (7, 7¢)

corresponding to the state assigning only jobs in 7 is

ny Ny

LB(S) = lef%‘] i+ lefi)CG% ®)

where n, =n,—n,, and w[f] and O[f] denote the
weight and the completion time of the job scheduled in the
rth order among n, jobs for agent 4 in 7, respectively.
Furthermore, (7, denotes the estimated minimum
completion time of a job that can be scheduled in the rth
order among n,, jobs for agent A in 7°.

Proof: The first term in Eq. 5 computes the sum of

weighted completion times of jobs for agent A4 already
scheduled. In the second term, without loss of generality,

completion times, ), are an increasing function of the

processing sequence, and w(},s' are decreasing function.
TNo

Therefore, Y w() G2 is minimized (Hardy et al., 1967),

T
r=1

providing a lower bound for .5.
For a given schedule .5, we suggest an efficient method

to calculate C(f) in Eq. 5 as follows.

1. Identify the minimum actual processing times at the
positions from (k+ 1) th to nth in S, while allowing
to select them from same jobs in 7°.

2. Calculate completion times at those positions using
the minimum actual processing times, denoted by
Cypl=k+1,-n.

3. Assign n, jobs for agent A to first n, positions and
(n—k—n,) jobs foragent B tofollowing (n — k—n,)
positions.

4. If n—k—n, >0, adjust the sequence of (n—k)
jobs to satisfy the upper bound condition for agent B
as follows. Otherwise, go to (5).

(a) Check the upper bound condition of agent B's
jobs from the nth job in a backward manner.

(b) Whenever a job does not satisfy the upper bound
condition, find one preceding last job for agent A
and interchange with it.

(c) Update Uas U— pAA, where pAA is the minimum
actual processing time of the selected agent A's
job for interchanging.

(d) Repeat (b) and (c) until we find first agent B's job
satisfying the upper bound condition, or there is
no more jobs to consider.

5. Stop with the minimum completion times of 7., jobs

for agent A.

3. Design of SA using different
initial solutions

As an efficient solution approach to find a near optimal

solution, in this section, we suggest a simulated annealing
(SA) algorithm, that was proposed by Kirkpatrick et al.
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(1983). It is one of the most popular meta-heuristics used
to solve combinatorial optimization problems based on
trajectory search procedure. It starts from an initial trial
solution and explores the solution space by taking steps in
random direction, while accepting some deteriorating
steps probabilistically. Therefore, it can escape from a
local optimum and increase the possibility to find a better
solution. As the algorithm proceeds, it focuses on the
feasible region that might contain an optimal solution. The
main features of the algorithm can be described as follows.

Objective function : During the search procedure, we
evaluate a trial solution under consideration using the
objective function for agent 4, which is to minimize the
total weighted completion time of jobs for agent A. We
represent the objective function value for the current trial

solution and next trial solution as z, and z,,, respectively.

Initial solution : Since we need to generate a feasible
initial solution and the upper bound condition for agent B
affects the feasibility of a solution under consideration, we
first arrange the jobs for agent B ahead in generating an
initial solution, to make C” _ as small as possible,
following the jobs for agent 4. We can consider different
methods to make the partial sequences for the two agents.
Specifically, we consider three methods to arrange jobs
for agent A such as (i) A/IS'I‘4 = random order, (ii) ]S2‘4 =
shortest normal processing time (SPT) order, and (iii) [SSA =
shortest weighted normal processing time (WSPT) order.
This is because the objective of agent A is to minimize the
total weighted completion time, and it might be achieved
by arranging jobs based on the information of (weighted)
normal processing times. In the case of scheduling jobs for
agent B, we suggest two methods to order jobs for agent
B such as (i) ISP = random order and (ii) 57 =

non-decreasing order of bf . Therefore, we can consider

3 %< 2 = 6 different methods to generate an initial solution.

Neighborhood generation : For a given trial solution,
we select two jobs randomly and interchange them to

generate next trial solution. After computing C'2,  of new

max

sequence generated, we check the upper bound condition

[ 82 JEaEINERPSEE
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for agent B. If it is feasible, we call it next trial solution.
Otherwise, we reapply this procedure until we get a
feasible one.

Move selection : Using the next trial solution, we

compute the objective function and get z, . If 2z, > z,, we

accept it and update the current trial solution with it.
Otherwise, we can accept it with the acceptance probability

defined as

P=c ! (6)

where 7'is a control parameter, called the temperature,
which can change the tendency to accept a worse solution
than the current one. If z, < z,,, the exponent part of Eq. 6
becomes negative, making P, in the range 0-1 as the
probability. If it is rejected, then we repeat from the
neighborhood generation step.

Temperature schedule : We notice that we can change
the value of 7"to control the acceptance probability. Since
P, becomes large as the value of 7"is large, we can make
the search of SA to perform in random direction by setting
alarge value of 7 at the early stage, whereas we can focus
on a special region by using small value of 7" at the later
stage of the algorithm. Based on this idea, we can design
how to change the temperature, called the temperature
schedule. First, we set the initial temperature using the initial
objective function value as 7} =¢, Xz, (0<¢, <1).
Then, after performing a fixed number of iterations /V at
T,, we decrease the value of 7} by (1—c,)x 100%,
represented as 7, = ¢, X T (0 <y < 1) . We can repeat
this procedure for a fixed number of steps C, which is the
number of times we change the temperature. Hence, the
temperature schedule can be expressedas 7, =c, X 7, _,
y=2,3,---, C.

Terminating condition : We terminate the algorithm
after a fixed number of iterations defined as C< V.
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4. A numerical experiment

4 1 Design of a numerical experiment

We designed a numerical experiment to evaluate the
performance of the suggested B&B algorithm and six
different SA(25", 1S7) (h=1,2,3,d=1,2), using different
methods in the generation of the initial solution as follows.
First, we considered four different values of n as n = 10,
12,14,16 with n, =ng. The value of U was set by
U=01+a)U,, +al,,.,where U, and U, arethe
minimum and maximum value of the makespan that can
be made using all jobs for agent B, respectively, and
a (0 < a < 1) is a real-valued parameter. We considered
three different values of « as o =0.25,0.50,0.75. We

computed the value of U,  as the sum of normal

ax

processing times of jobs for agent B and U, ;, as the sum

of minimum actual processing times at first n; positions
in a sequence by allowing duplicated selection of jobs.
We performed a pre-testing of SA by generating some
simple scheduling problems using n =6, 8 and a = 0.25,
0.50,0.75. More precisely, for each configuration of
(n, ), we generated 30 problem instances using normal
processing times and job weights randomly generated in
therange [1,100], and learning effects randomly generated
in the range (0, 2]. We solved problem instances using six
SAs, and compared the performance of the SAs using

% error defined as

TWCT by SA(IS", 1S7)

X
Optimal TWCT 1) 100

% error =

where TWCT is the total weighted completion time,
and SA(]ShA, [SdB) (h=1,2,3,d=1,2) represents the SA
using Z5;* and 757 as initial solution methods for agent A
and agent B, respectively, as defined in Section 3. Using
the pre-testing results, we set the parameter values of SA
to ¢, =02, ¢, =0.5, N=10xn, C=10.

As arelative comparison method of the performance of
different SAs, we defined the relative deviation percentage
(RDP) of SA(IS, ISF) as

TWCT by SA(IS, 157

RDP, ;= min 7WCT by any SA

1/>100.

We can calculate this performance measure by computing
one RDP for each problem instance and compiling statistics

such as mean, maximum, or standard deviation.

4.2 Experimental results
For each configuration of (n, o) and the solution method,

we generated 50 problem instances using the same parameter
ranges and solved them using the B&B algorithm and six
different SAs, SA(157, 157) (h=1,2,3,d=1,2). For
each combination of (n, ) and B&B (or SA( 157", I5F)),

we calculated the mean, standard deviation (stdev), and
maximum (max) number of generated nodes, CPU time
(in seconds), and % error as in Table 1. Because small
value of « decreases the value of U, it generates a tight
upper bound for agent B and makes B&B difficult to find
an optimal solution, which were expressed as increasing
values of node number and CPU time at « =0.25,
compared to other values of «, for a fixed value of n. The
number of generated nodes and CPU time of B&B
increased exponentially as n increases. Specifically, B&B
took a mean 0f 218,321.058 s (60.64 h) to find an optimal
solution for the largest system (n, )= (16, 0.25).

The SAs showed good performance because they had
low % error in almost all configurations of (n, a) with a
mean of less than 2%. The CPU time is within 1.1 s in all
configurations, that is obviously favorable over that of
B&B in environments requiring real-time scheduling. The
CPU times were not affected by the size n of problem
instances because the CPU times were increased linearly
as n increases for a fixed value of «. However, we could
not see any linear relationship between the CPU times and
the value of « for a fixed value of n. This can imply that
the tightness of upper bound U for agent B does not affect
the computation time of SA procedure.

The performance difference of the proposed SAs in
terms of % error was compared statistically by applying
the paired ¢-test. After denoting the difference of the ith
paired values of % error for two considered SAs, (for
example, SA(1S7, 1SP) vs. SA(157,18F)), as D,, we
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1. Results of numerical experiments (CPU time in
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computed the sample mean dlfference D and sample
Z D, and s,=

i=1

standard deviation s, as D=— 50

. By the Central Limit Theorem (Hayter,

1996), D has a normal distribution with unknown
variance and hence, the test statistic ¢ defined as
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has a t-distribution with 49 degrees of freedom. Then,
we can perform the ¢-test by constructing the hypotheses
set Hy:pp=0; H :pp#0, where the hypothesis
H, : pjp# 0 represents the tested assumption that the
performance difference of the two considered SAs is
significant. Table 2 displays the ¢-values computed by Eq.
7 for the paired ¢-test. The first row is the combination of
indexes representing the initial solution generation methods
as defined in Section 3. Hence, each of them denotes two
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Table 2. t-values for paired t-test

n @ (11,12)  (11,21)  (11,22)  (11,31)  (11,32) | (12,21) (12.22) (12,31)  (12,32) | (21,22)  (21,31)  (21,32) | (22.31)  (22,32) | (31,32)
0.25 -0.316  -2.073  -1.730  -1.703  -1.339 -1.965  -1.678  -1.673  -1.676 0.537 1.164 1.682 0.846 1.337 0.805
10 | 0.50 -1.430  -1.109 0.301 -0.812  -1.199 0.582 1.665 0.091 0.450 1.522  -0.301 -0.166 -0.907  -1.807 0.210
0.75 -0.374 1.421 -0.010 2.331 1.287 1.008 0.337 1.537 1.003 -0.962 1.764  -0.229 1.531 0.905 -1.768
0.25 S1.158 1422 -0.869  -0.230  -2.136 -0.436 0.543 1.084  -1.254 0.805 1.324 1.179 0.600  -1.358 41,952
12 | 0.50 -0.132  -0.609  -0.553  -0.505 1.068 20315 -0.431 -0.427 0.800 -0.272 0.027 1.420 0.270 0.930 1.143
0.75 0.417 0212 -0.532 0.466 1.152 -0.146  -0.002 0.011 0.585 -0.820 0.175 0.678 0.054 1.303 0.740
0.25 -0.437  -0.020  -1.203  -0.984  -0.506 0436  -1.505  -0.341 0.028 -1.242  -0.800  -0.525 0.401 1.196 0.386
14 | 0.50 1008 -0.215 0.578 0.847 0.922 -1.164  -0.411 -0.368  -0.420 0.806 1.009 1.030 0.110 0.006 -0.028
0.75 0.339  -0.620  -1.227  -0.828  -0.696 41528 -1.333  -1.323  -1.059 -0.740  -0.431 0.074 0.504 0.826 0.421
0.25 -0.120 0.960  -0.180  -0.723  -0.245 0.831 -0.035  -0.541 -0.122 1172 1462 -0.912 -0.619  -0.006 0.386
16 | 0.50 1.266 1.444 1.376 2418 1.628 0.333 0.255 2.055 0.445 -0.103 1.330 0.153 1.735 0.201 -1.175
0.75 1.468  -0.254 0472  -0.898 0.182 -1.034  -0.627  -1.790  -1.485 0.679  -0.503 0.354 1709 -0.341 1.116

SAs considered for the paired t-test. For example, the
value (11,12) in the third column represents two SAs using
SA(157, 1SF) and SA(IS{, 1SP) . Columns 3-17 are t
-values using D, as the difference of the ith paired values
of % error for two SAs using the initial solution
generation methods defined in the corresponding first
row.

The rejection region of A, with a confidence level of
95% s [t]> #9549 = 2.010 . Asthe ¢-test result, we could
notice that almost every t-values are less than 2.0 except 5
of the 150 cases, resulting in accepting H, : 1, =0 in
almost cases. More specifically, only 4 of the 12 (n, o)
configurations had at most one or two ¢-values larger than
2.0 representing the significance of performance difference
for SAs. Therefore, we could argue that the performance
differences of all SAs considered are not significant.

However, we may differentiate the performance of
SAs for each configuration (n,«) using the ¢-values as
follow. If we consider two SAs using SA(ZS;", 1S5 ) and
SA(187, 1% ) , positive t-value in Table 2 implies that the
% error by SA using SA(1S% . 157 ) is larger than that by
SA using SA(Z8;% , IS5 ) , which is equivalent to that SA using
SA(157. 155 is better than that using SA(ZS, 155 ).
Based on these argument, we can identify the best SA for
each configuration as follows; (n, v, index for Z5) = (10,
0.25,11), (10, 0.50, 22), (10, 0.75, 31), (12, 0.25, 11), (12,
0.50,32), (12,0.75, 32), (14, 0.25, 11), (14, 0.50, 12), (14,

0.75, 12), (16, 0.25, 21), (16, 0.50, 31), (16, 0.75, 12),
where 15 is the abbreviation of initial solution.

We calculated the mean, standard deviation, and maximum
values of the RDP for six SAs (i.e., SA([S,f, ISf)
(h=1,2,3,d=1,2) as in Table 3. From the RDP values,
we could verify the relative performance differences by
identifying the best SA as above. Furthermore, we could
argue that random generation method is better than the
others for agent A because it was prominent in 6 of the 12
configurations, whereas SPT and WSPT were 2 and 4,
respectively. The initial solution method for agent B did
not affect the performance of % error because both
methods (i.e., random and non-decreasing) had same
number of best cases (6 in the 12 configurations).

5. Conclusions

In this paper, we considered the two-agent single-
machine scheduling problem with exponential job-dependent
position-based learning effects. The objective was to
minimize the total weighted completion time of one agent
with the restriction that the makespan of the other agent
cannot exceed an upper bound. First, we suggested a B&B
algorithm by developing some dominance/feasibility properties
and a lower bound to find an optimal solution. Second, we
designed an efficient simulated annealing (SA) algorithm
to search a near optimal solution by considering six
different SAs to generate initial solutions. We showed the

HMe4d mMas 20153 122 @D
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Table 3. Relative deviation percentages of SAs

n a Value of || SAUS{, 18B) | sAus{, 18B) | sAauss, 18B) | saus 1sP) | sAauss, 1sB) | sauss, 1sP)
mean 0.121 0.148 1.033 0.876 0.473 0.286
0.25 stdev 0.459 0.420 3.089 3.051 1.352 0.725
max 3.125 2.470 13.519 16.920 8.038 3.188
mean 0.149 0.494 0.335 0.120 0.454 0.369
10 | 0.50 stdev 0.595 1.566 0.982 0.282 2.572 1.143
max 3.775 7.832 1.569 1.463 18.209 6.916
mean 0.621 0.793 0.293 0.626 0.112 0.329
0.75 stdev 1.520 3.100 0.724 2.337 0.235 0.863
max 7.418 20.202 3.399 15.654 1.102 5.138
mean 0.656 1.319 1.604 1.036 0.724 2.228
0.25 stdev 1.384 3.766 4.496 2.617 1.687 5.272
max 8.976 21.617 23.699 13.836 10.725 23.699
mean 0.609 0.646 0.739 0.866 0.734 0.445
12 | 0.50 stdev 1.010 1.681 1.420 3.158 1.613 0.835
max 3.939 10.316 5.760 21.295 9.744 3.631
mean 0.883 0.688 0.765 1.205 0.684 0.455
0.75 stdev 2.519 2.349 2.836 3.439 1.533 1.366
max 15.058 15.262 18.455 20.672 8.876 6.757
mean 0.919 1.121 0.928 1.587 1.322 1.111
0.25 stdev 1.885 2.461 1.799 3.059 3.199 2.096
max 7.288 13.339 8.202 15.907 19.637 9.176
mean 1.328 0.799 1.484 0.975 0.923 0.932
14 | 0.50 stdev 3.203 1.641 3.707 2.837 1.539 1.669
max 15.130 8.547 20.067 19.521 5.714 6.861
mean 0.895 0.792 1.136 1.643 1.314 1.170
0.75 stdev 1.168 1.602 2.422 4.053 3.231 2.289
max 5.816 10.001 15.489 24.399 16.476 13.696
mean 1.349 1.421 1.000 1.437 1.773 1.498
0.25 stdev 2.149 3.085 1.521 2.282 3.338 3.633
max 10.407 17.341 8.674 10.269 18.564 24.394
mean 2.935 1.851 1.675 1.723 0.978 1.565
16 | 0.50 stdev 5.670 2.885 3.501 2.553 1.110 3.160
max 36.999 11.147 22.984 10.684 3.905 18.861
mean 1.407 0.914 1.556 1.178 1.859 1.338
0.75 stdev 1.715 1.492 3.847 2.610 3.084 1.653
max 8.936 6.366 21.38622.967 17.421 15.292 5.980

performance superiority of the suggested SA using a
numerical experiment.

Using the paired ¢-test, we verified that there is no
significant difference in the performance of % error
between different SAs. However, we could notice that
random generation method is better than the others for
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agent A, whereas the initial solution method for agent 5
did not affect the performance of % error. Furthermore,
because the CPU time by SAs, pretty faster than that by
B&B, was not affected by the size n of problem instances
and the tightness of upper bound U for agent B did not
affect the computation time of SA procedure, we can
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apply the suggested SAs in environments requiring real-
time scheduling.

As the direction of future research, we can extend the
current problem to the case of multi-agent scheduling
problems with more than two agents. Moreover, we can
consider due date in performance measure, represented as
minimizing tardiness, weighted tardiness, or the number
of tardy job. Because keeping due date can reflect the
service level to the customer, this may be a very important
issue in industry. We can also think of multi-machine
scheduling problems with multi-agent, where we have to
maintain information on the completion times of the jobs
at each machine as the processing steps proceed, making
the problem more challenging.
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