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ABSTRACT

In this paper, we consider a two-agent single-machine scheduling problem with exponential job-dependent 

position-based learning effects. The objective is to minimize the total weighted completion time of one agent with 

the restriction that the makespan of the other agent cannot exceed an upper bound. First, we propose a branch-and- 

bound algorithm by developing some dominance /feasibility properties and a lower bound to find an optimal solution. 

Second, we design an efficient simulated annealing (SA) algorithm to search a near optimal solution by considering 

six different SAs to generate initial solutions. We show the performance superiority of the suggested SA using a 

numerical experiment. Specifically, we verify that there is no significant difference in the performance of  

between different considered SAs using the paired -test. Furthermore, we testify that random generation method is 

better than the others for agent , whereas the initial solution method for agent  did not affect the performance 

of  .

Key words : Two-Agent Scheduling, Exponential Learning Effect, Job-Dependent Position-Based Processing Time, 

Total Weighted Completion Time, Makespan, Branch-And-Bound Algorithm, Simulated Annealing

요   약

본 논문은 작업별 위치기반 지수학습 효과를 갖는 2-에이전트 단일기계 스케줄링 문제를 고려한다. 에이전트 는 가중 

완료 시간의 합을 최소화하며, 에이전트 는 총소요시간에 대한 상한 값을 만족하는 조건을 갖는다. 본 연구에서는 먼저 우수

해/가능해에 대한 특성을 개발하고, 이를 이용하여 최적 해를 찾기 위한 분지한계 알고리즘을 설계한다. 또한 근사 최적 해를 

구하기 위해 6가지 다른 초기해 생성 방법을 이용한 시뮬레이티드 어닐링 알고리즘을 제안한다. 수치 실험을 통해 제안된 알고

리즘의 우수한 성능을 검증한다. 실험 결과, 다른 초기해 생성 방법들 간에는  차이가 유의하게 발생하지 않았으며, 

에이전트 의 작업 순서를 무작위로 생성할 때 성능이 좋아짐을 발견하였다. 반면에, 에이전트 의 초기해 생성 방법은 성능

에 영향을 미치지 않았다.

주요어 : 2-에이전트 스케줄링, 지수 학습효과, 작업별 위치기반 처리시간, 가중 완료 시간의 합, 총소요시간, 분지 한계 
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1. Introduction

Two-agent single-machine scheduling problem can be 

found in various industrial applications where two agents 

compete for a single common machine to achieve their 

respective objectives. For example, we can consider a 
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production system under maintenance planning. The 

production department (agent) wants to operate the system 

without any idle time in order to maximize the system 

utilization. On the other hand, the maintenance department 

(agent) calls for frequent pauses of the production system 

in order to reduce the number of unexpected breakdowns 

of the system. Therefore, two departments (agents) share 

the production system, while pursuing different objective 

functions. Another example of the two-agent scheduling 

problems is the case of a classical problem in air traffic 

management for scheduling aircraft landings on a given 

set of runways. If two airlines (agents) have different 

performance measures such as safety and quality of service, 

each airline (agent) is definitely interested in maximizing 

the frequency cleaning/ checking the runways and minimizing 

the delay of the corresponding flights, respectively, in 

order to maximize the satisfaction of its own passengers 

(Agnetis, 2012).

This problem is a special case of general single-agent 

bi-criteria optimization model (Agnetis et al., 2004) because 

all jobs contribute to both objectives, and a key issue is to 

determine the non-dominated schedules for each objective 

in a sense that a better schedule for one objective makes 

the other objective worse. Furthermore, this problem has 

some characteristics as follows: (i) two objectives correspond 

to different two agents having their own jobs to process, 

(ii) they compete on the usage of a common processing 

resource, (iii) each agent has different performance measure, 

and (iv) only the jobs pertaining to one agent contribute to 

the computation of the objective function for itself. 

Therefore, a typical methodology for simple single-agent 

bi-criteria optimization models such as using weighted 

objective functions of two agents cannot be applied, and 

the complexity of it is higher than that by simple single- 

agent bi-criteria scheduling problem (Agnetis et al., 2004), 

necessitating a new systematic approach.

Of particular interest is a two-agent single-machine 

scheduling problem with exponential job-dependent position- 

based learning effect. This means that each job has its own 

learning effect, implying that the learning in the production 

process of some jobs is faster than those of others. 

Moreover, the actual processing time of a job is expressed 

as an exponential decreasing function of learning effect 

and processing sequence. For example, performing similar 

tasks repeatedly can improve the skills of workers so that 

they can perform setups and handle raw materials faster, 

while reducing the actual processing time. This modeling 

concept is a plausible scenario in real-life manufacturing 

environment, deserving some attention.

However, to the best of our knowledge, in the literature 

there has been no research works on this specific issue 

considering two-agent, position-dependent, and job-dependent 

learning effect, simultaneously, whereas there were some 

works on simpler cases considering position-dependent 

processing times (learning/ aging) for two-agent or job- 

dependent learning effect for single agent as follows; 

Since the concepts of the two-agent single-machine scheduling 

problem was first introduced by Baker and Smith (2003), 

many research works have been conducted on this topic, 

while learning/aging effect in a single-agent scheduling 

problem were firstly introduced by Biskup (1999) and 

Mosheiov (2001), respectively. Readers can find an extensive 

survey on scheduling problems with learning effects in 

Biskup (2008). Mosheiov (2005) showed that a V-shaped 

schedule is optimal for the problem of minimizing flowtime 

in a single-machine case. Kuo and Yang (2008) solved a 

single-machine scheduling problem with the cyclic process 

of an aging effect. Chang et al. (2009) worked on single- 

machine scheduling problems with a common due date 

under learning/aging effect consideration.

Meanwhile, two-agent scheduling problems with position- 

dependent processing times have received considerable 

attention in recent years, where actual processing times 

can be represented by using a linear function or an expo-

nential function. Liu et al. (2010), Lee et al. (2010), Liu et 

al. (2011), and Wu et al. (2013) considered a linear 

function for computing actual processing times. On the 

other hand, Cheng et al. (2011), Wu et al. (2011b), and Li 

and Hsu (2012) applied an exponential function to represent 

actual processing times. All of these works took into 

account different performance objectives for two agents, 

which are functions of completion times such as (weighted) 

sum of tardiness, (weighted) sum of completion times, 

lateness, the number of tardy jobs, or upper bound of 

makespan, and so on.

Regarding the modeling concept of job-dependent learning 
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effect, it was suggested by Cheng and Wang (2000) for the 

first time. Mosheiov and Sidney (2003) studied a job- 

dependent learning curve where the learning of some jobs 

is faster than those of others. Then, Bachman and Janiak 

(2004) investigated a learning effect formulation on the 

single-machine case, and Wang and Xia (2005) extended 

it to multiple-machine case for a flow-shop consisting of 

an increasing series of dominating machines. However, 

they did not consider a two-agent case competing for a 

common resource.

Motivated by these remarks, in this paper, we inve-

stigate a rather general problem, where two agents are 

included with an exponential position-based and job- 

dependent learning effect, while competing for a common 

single machine. In the context of the operational framework, 

we call it a two-agent single-machine scheduling problem 

with exponential job-dependent position-based learning 

effect. The objective is to minimize the total weighted 

completion time of one agent with the restriction that the 

makespan of the other agent cannot exceed an upper 

bound. We suggest some dominance and feasibility properties 

for a branch-and-bound algorithm (B&B), which can be 

used to find optimal solutions and to compare effectiveness 

of other algorithms considered. Furthermore, we design an 

efficient simulated annealing (SA) algorithm to search a 

near optimal solution and show its superiority of performance 

by using a numerical experiment.

The remainder of this paper is organized as follows. In 

the next section, we define the problem formally and suggest 

several dominance and feasibility properties related to the 

B&B algorithm. In Section 3, we design an efficient 

simulated annealing algorithm to obtain near-optimal 

solutions. The computational experiments are conducted 

in Section 4 and we conclude our discussion by suggesting 

some future works in Section 5.

2. Problem definition and a 

branch-and-bound algorithm

2.1 Problem definition

Two agents  and   have sets of jobs 

 ⋯ 

 , 
  ⋯ 

  to process, 

respectively, while competing for a single common machine. 

The objective of agent  is to minimize the total weighted 

completion time and agent   wants to keep the makespan, 


max

 , less than an upper bound . Each job for agent  is 

assigned with a weight 
 and a normal processing time 


 ≤ ≤ 


. Each job for agent   has a normal 

processing time 
  ≤ ≤ 


. All jobs have job- 

dependent and position-based learning effect, so that 

actual processing time of job 
∈ processed at 

the th position in a sequence, 
 , can be expressed as 

an exponential decreasing function 
  

∙




, 

where 
  is a learning ratio of job 

∈. 

Then, using the three-field notation 


 suggested by 

Graham et al. (1979), where  is the number of machines, 

 denotes job characteristics, and  describes objective 

functions, the scheduling problem under consideration 

can be represented as

 
  






 
   







  







 
max

 ≤

 (1)

where 
 is the completion time of job 

. Agnetis et 

al. (2004) showed that  
  







  
max

 ≤ is binary 

NP-hard. It implies that our problem in Eq. 1 is at least 

binary NP-hard, and we need an efficient solution approach 

to solve it. In our work, we suggest a B&B algorithm to 

obtain an optimal solution, and a simulated annealing 

algorithm for a near optimal solution.

2.2 Properties and a lower bound for a 

branch-and-bound algorithm

For a B&B approach, we first develop four dominance 

properties based on a pairwise interchange comparison 

method as follows. Suppose that we have two schedules 

 and  s.t. 
  

 
 ′ and 

  
 

 ′, 

where  is a scheduled part of   jobs and ′  is a 

unscheduled part of   jobs. Hence, jobs 
 and 


 are in the th and  th positions in , respectively. 

 can be obtained by interchanging two jobs 
 and 

 
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in . By defining  as the completion time of the last job 

in , we can compute the completion times of jobs 
 and 


 as




  


 


 


  


 





 





  


 





  


 





 




Let us assume that we just sequenced 
 after  and are 

about to arrange 
, resulting in schedule . Then, we 

can derive certain conditions under which schedule  is 

dominated by schedule . Specifically, we need two 

conditions for two agents such that (i)  has smaller total 

weighted completion time for agent  than that of , and 

(ii) the makespan of agent   satisfies the upper bound 

condition. In addition, we need one more condition such 

that 


 


 , implying that we can keep the 

dominance of  over  after arranging jobs in ′  in later 

steps. By defining 
  


, we have the following 

properties.

(Property 1) For 

∈

 

∈

, 

if 









 


≤








min


























 








 


, 

then  dominates .

Proof: Since 
 


∈

, the first condition is









 ≤ 







⇔ 














 















≤

Therefore, we have













≤⇔








≤



 (2)

















≤

⇔








≥














 (3)

From 
 

 , we have


 









 










⇔



























  





 (4)

Since there is no job for agent  , we do not need the make-

span condition for agent  . From Eqs. 2-4,  dominates , 

if 









 


≤








min


























 








 


.

Three further properties can be proved in a similar 

manner to Property 1.

(Property 2) For 

∈


 


∈

 , 

if 



























 
 


 

and  








 

 


≤, 

then  dominates .

(Property 3) For 

∈


 


∈

, 

if 












 

 




 



 

and 


 


≤, then  dominates .

(Property 4) 

∈


 


∈

 , 

if 









 


≤








min


























 








 


, 

then  dominates .

Moreover, we have three more feasibility properties of 

a sequence as follows. Suppose that we have a sequence of 

jobs   , where  represents a sequence of  jobs 

scheduled and  is a set of   jobs unscheduled. In 

addition, let     and     be the last th job scheduled 

and the completion time of it, respectively. Then, the 

following properties can be proved easily using the 

objective function requirement of agent  .

(Property 5) If     

with   ∈
 and ∩

≠∅, 

then the sequence    is non-promising.
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(Property 6) If     

with   ∈
, 

then the sequence    is non-promising.

(Property 7) If    ≤ ∩
≠∅, 

and    min  , 

then the sequence    is non-promising, where 

min   is the minimum actual processing time by 

any job in  at the  th position.

Based on these properties, we can apply a B&B algorithm 

to find an optimal solution (Hillier and Lieberman, 2015). 

A node represents a partial or complete schedule and the 

initial node is empty, denoting none of jobs is scheduled. 

Then, we can assign any job in the first position in a 

sequence and select a job for the second position, and so 

on. This is called a branching process. Hence, the basic 

idea is to branch a node into several nodes, each 

corresponding to scheduling one available job at that time 

point, and bound it by computing the potential minimum 

value of the total weighted completion time, called a lower 

bound, for agent , which can speed up the search 

procedure.

(Lemma 1) Suppose that there are   jobs for agent 

 in  so that their weights can be sorted in a non- 

increasing order, as 
 ≥

 ≥⋯≥


 . Then, a 

lower bound of 
  







 for a sequence      

corresponding to the state assigning only jobs in  is

 
  



 

 

 
  







  (5)

where   


, and  
  and  

  denote the 

weight and the completion time of the job scheduled in the 

th order among  jobs for agent  in , respectively. 

Furthermore,  
  denotes the estimated minimum 

completion time of a job that can be scheduled in the th 

order among  jobs for agent  in .

Proof: The first term in Eq. 5 computes the sum of 

weighted completion times of jobs for agent  already 

scheduled. In the second term, without loss of generality, 

completion times,  
 , are an increasing function of the 

processing sequence, and  
 s' are decreasing function. 

Therefore, 
  



 

 

  is minimized (Hardy et al., 1967), 

providing a lower bound for  . 

For a given schedule  , we suggest an efficient method 

to calculate 
  in Eq. 5 as follows.

1. Identify the minimum actual processing times at the 

positions from  th to th in  , while allowing 

to select them from same jobs in .

2. Calculate completion times at those positions using 

the minimum actual processing times, denoted by 

    ⋯  .

3. Assign  jobs for agent  to first  positions and 

   jobs for agent   to following    

positions.

4. If    , adjust the sequence of   

jobs to satisfy the upper bound condition for agent B 

as follows. Otherwise, go to (5).

  (a) Check the upper bound condition of agent  's 

jobs from the th job in a backward manner.

  (b) Whenever a job does not satisfy the upper bound 

condition, find one preceding last job for agent  

and interchange with it.

  (c) Update  as , where 


 is the minimum 

actual processing time of the selected agent  's 

job for interchanging.

  (d) Repeat (b) and (c) until we find first agent  's job 

satisfying the upper bound condition, or there is 

no more jobs to consider.

5. Stop with the minimum completion times of  jobs 

for agent .

3. Design of SA using different 

initial solutions

As an efficient solution approach to find a near optimal 

solution, in this section, we suggest a simulated annealing 

(SA) algorithm, that was proposed by Kirkpatrick et al. 
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(1983). It is one of the most popular meta-heuristics used 

to solve combinatorial optimization problems based on 

trajectory search procedure. It starts from an initial trial 

solution and explores the solution space by taking steps in 

random direction, while accepting some deteriorating 

steps probabilistically. Therefore, it can escape from a 

local optimum and increase the possibility to find a better 

solution. As the algorithm proceeds, it focuses on the 

feasible region that might contain an optimal solution. The 

main features of the algorithm can be described as follows.

Objective function : During the search procedure, we 

evaluate a trial solution under consideration using the 

objective function for agent , which is to minimize the 

total weighted completion time of jobs for agent . We 

represent the objective function value for the current trial 

solution and next trial solution as  and , respectively. 

Initial solution : Since we need to generate a feasible 

initial solution and the upper bound condition for agent   

affects the feasibility of a solution under consideration, we 

first arrange the jobs for agent   ahead in generating an 

initial solution, to make 
max

  as small as possible, 

following the jobs for agent . We can consider different 

methods to make the partial sequences for the two agents. 

Specifically, we consider three methods to arrange jobs 

for agent  such as (i) 
 = random order, (ii) 

 = 

shortest normal processing time (SPT) order, and (iii) 
 = 

shortest weighted normal processing time (WSPT) order. 

This is because the objective of agent  is to minimize the 

total weighted completion time, and it might be achieved 

by arranging jobs based on the information of (weighted) 

normal processing times. In the case of scheduling jobs for 

agent  , we suggest two methods to order jobs for agent 

  such as (i) 
  = random order and (ii) 

 = 

non-decreasing order of 
. Therefore, we can consider 

 ×    different methods to generate an initial solution.

Neighborhood generation : For a given trial solution, 

we select two jobs randomly and interchange them to 

generate next trial solution. After computing 
max

  of new 

sequence generated, we check the upper bound condition 

for agent  . If it is feasible, we call it next trial solution. 

Otherwise, we reapply this procedure until we get a 

feasible one.

Move selection : Using the next trial solution, we 

compute the objective function and get . If   , we 

accept it and update the current trial solution with it. 

Otherwise, we can accept it with the acceptance probability 

defined as

  








 (6)

where   is a control parameter, called the temperature, 

which can change the tendency to accept a worse solution 

than the current one. If   , the exponent part of Eq. 6 

becomes negative, making  in the range 0-1 as the 

probability. If it is rejected, then we repeat from the 

neighborhood generation step.

Temperature schedule : We notice that we can change 

the value of   to control the acceptance probability. Since 

 becomes large as the value of   is large, we can make 

the search of SA to perform in random direction by setting 

a large value of   at the early stage, whereas we can focus 

on a special region by using small value of   at the later 

stage of the algorithm. Based on this idea, we can design 

how to change the temperature, called the temperature 

schedule. First, we set the initial temperature using the initial 

objective function value as    ×       . 

Then, after performing a fixed number of iterations  at 

, we decrease the value of  by   × , 

represented as    ×      . We can repeat 

this procedure for a fixed number of steps  , which is the 

number of times we change the temperature. Hence, the 

temperature schedule can be expressed as    ×

    ⋯ .

Terminating condition : We terminate the algorithm 

after a fixed number of iterations defined as ×.
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4. A numerical experiment

4.1 Design of a numerical experiment

We designed a numerical experiment to evaluate the 

performance of the suggested B&B algorithm and six 

different 

 


      , using different 

methods in the generation of the initial solution as follows. 

First, we considered four different values of  as   

   with 


 

. The value of  was set by 

   
min


max

, where 
min

 and 
max

 are the 

minimum and maximum value of the makespan that can 

be made using all jobs for agent  , respectively, and 

       is a real-valued parameter. We considered 

three different values of   as     . We 

computed the value of 
max

 as the sum of normal 

processing times of jobs for agent   and 
min

 as the sum 

of minimum actual processing times at first 

 positions 

in a sequence by allowing duplicated selection of jobs.

We performed a pre-testing of SA by generating some 

simple scheduling problems using     and   

 . More precisely, for each configuration of 

  , we generated 30 problem instances using normal 

processing times and job weights randomly generated in 

the range    , and learning effects randomly generated 

in the range  . We solved problem instances using six 

SAs, and compared the performance of the SAs using 

 defined as

  
 

  
 


× 

where   is the total weighted completion time, 

and 
 

         represents the SA 

using 
 and 

 as initial solution methods for agent  

and agent  , respectively, as defined in Section 3. Using 

the pre-testing results, we set the parameter values of SA 

to          ×    .

As a relative comparison method of the performance of 

different SAs, we defined the relative deviation percentage 

(RDP) of 
 

  as


 
min    

  
 


 × .

We can calculate this performance measure by computing 

one RDP for each problem instance and compiling statistics 

such as mean, maximum, or standard deviation.

4.2 Experimental results

For each configuration of    and the solution method, 

we generated 50 problem instances using the same parameter 

ranges and solved them using the B&B algorithm and six 

different SAs, 
 

        . For 

each combination of    and B&B (or 
 

 ), 

we calculated the mean, standard deviation (stdev), and 

maximum (max) number of generated nodes, CPU time 

(in seconds), and   as in Table 1. Because small 

value of   decreases the value of , it generates a tight 

upper bound for agent   and makes B&B difficult to find 

an optimal solution, which were expressed as increasing 

values of node number and CPU time at   , 

compared to other values of  , for a fixed value of . The 

number of generated nodes and CPU time of B&B 

increased exponentially as  increases. Specifically, B&B 

took a mean of 218,321.058 s (60.64 h) to find an optimal 

solution for the largest system     .

The SAs showed good performance because they had 

low   in almost all configurations of    with a 

mean of less than 2%. The CPU time is within 1.1 s in all 

configurations, that is obviously favorable over that of 

B&B in environments requiring real-time scheduling. The 

CPU times were not affected by the size  of problem 

instances because the CPU times were increased linearly 

as  increases for a fixed value of  . However, we could 

not see any linear relationship between the CPU times and 

the value of   for a fixed value of . This can imply that 

the tightness of upper bound  for agent   does not affect 

the computation time of SA procedure.

The performance difference of the proposed SAs in 

terms of   was compared statistically by applying 

the paired -test. After denoting the difference of the th 

paired values of   for two considered SAs, (for 

example, 
 

  vs. 
 

 ), as  , we 
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Table 1. Results of numerical experiments (CPU time in s)

computed the sample mean difference   and sample 

standard deviat ion 

,  as  








  





 and 












  








. By the Central Limit Theorem (Hayter, 

1996),   has a normal distribution with unknown 

variance and hence, the test statistic  defined as

 




 
 (7)

has a -distribution with 49 degrees of freedom. Then, 

we can perform the -test by constructing the hypotheses 

set 
 


 

 

≠, where the hypothesis 


 


≠ represents the tested assumption that the 

performance difference of the two considered SAs is 

significant. Table 2 displays the -values computed by Eq. 

7 for the paired -test. The first row is the combination of 

indexes representing the initial solution generation methods 

as defined in Section 3. Hence, each of them denotes two 
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Table 2. -values for paired -test

SAs considered for the paired -test. For example, the 

value (11,12) in the third column represents two SAs using 


 

  and 
 

 . Columns 3-17 are 

-values using  as the difference of the th paired values 

of   for two SAs using the initial solution 

generation methods defined in the corresponding first 

row.

The rejection region of  with a confidence level of 

95% is     . As the -test result, we could 

notice that almost every -values are less than 2.0 except 5 

of the 150 cases, resulting in accepting 
 


 in 

almost cases. More specifically, only 4 of the 12    

configurations had at most one or two -values larger than 

2.0 representing the significance of performance difference 

for SAs. Therefore, we could argue that the performance 

differences of all SAs considered are not significant.

However, we may differentiate the performance of 

SAs for each configuration    using the -values as 

follow. If we consider two SAs using 


 



   and 




 



  , positive -value in Table 2 implies that the 

  by SA using 


 



   is larger than that by 

SA using 


 



  , which is equivalent to that SA using 




 



   is better than that using 


 



  . 

Based on these argument, we can identify the best SA for 

each configuration as follows; (  , index for ) = (10, 

0.25, 11), (10, 0.50, 22), (10, 0.75, 31), (12, 0.25, 11), (12, 

0.50, 32), (12, 0.75, 32), (14, 0.25, 11), (14, 0.50, 12), (14, 

0.75, 12), (16, 0.25, 21), (16, 0.50, 31), (16, 0.75, 12), 

where   is the abbreviation of initial solution.

We calculated the mean, standard deviation, and maximum 

values of the RDP for six SAs (i.e., 
 


       as in Table 3. From the RDP values, 

we could verify the relative performance differences by 

identifying the best SA as above. Furthermore, we could 

argue that random generation method is better than the 

others for agent  because it was prominent in 6 of the 12 

configurations, whereas SPT and WSPT were 2 and 4, 

respectively. The initial solution method for agent   did 

not affect the performance of   because both 

methods (i.e., random and non-decreasing) had same 

number of best cases (6 in the 12 configurations).

5. Conclusions

In this paper, we considered the two-agent single- 

machine scheduling problem with exponential job-dependent 

position-based learning effects. The objective was to 

minimize the total weighted completion time of one agent 

with the restriction that the makespan of the other agent 

cannot exceed an upper bound. First, we suggested a B&B 

algorithm by developing some dominance/feasibility properties 

and a lower bound to find an optimal solution. Second, we 

designed an efficient simulated annealing (SA) algorithm 

to search a near optimal solution by considering six 

different SAs to generate initial solutions. We showed the 
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Table 3. Relative deviation percentages of SAs

performance superiority of the suggested SA using a 

numerical experiment.

Using the paired -test, we verified that there is no 

significant difference in the performance of   

between different SAs. However, we could notice that 

random generation method is better than the others for 

agent , whereas the initial solution method for agent   

did not affect the performance of  . Furthermore, 

because the CPU time by SAs, pretty faster than that by 

B&B, was not affected by the size  of problem instances 

and the tightness of upper bound  for agent   did not 

affect the computation time of SA procedure, we can 
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apply the suggested SAs in environments requiring real- 

time scheduling.

As the direction of future research, we can extend the 

current problem to the case of multi-agent scheduling 

problems with more than two agents. Moreover, we can 

consider due date in performance measure, represented as 

minimizing tardiness, weighted tardiness, or the number 

of tardy job. Because keeping due date can reflect the 

service level to the customer, this may be a very important 

issue in industry. We can also think of multi-machine 

scheduling problems with multi-agent, where we have to 

maintain information on the completion times of the jobs 

at each machine as the processing steps proceed, making 

the problem more challenging.
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