• Title/Summary/Keyword: Aged Steel

Search Result 187, Processing Time 0.024 seconds

A Study on the Evaluation of Material Degradation for 1Cr-1Mo-0.25V Steel using Linear and Nonlinear Ultrasonics (선형 및 비선형 초음파를 이용한 1Cr-1Mo-0.25V의 열화평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung;Song, Sung-Jin;Kim, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.549-555
    • /
    • 2001
  • Ultrasonic is a powerful nondestructive technique for getting the information of flaws and material properties of in-services facilities. We prepared 4 different 1Cr-1Mo-0.25V specimens by Isothermal aging at $630^{\circ}C$. We evaluated material degradation using ultrasonic parameters, velocity, attenuation and harmonic generation. Attenuation and nonlinear parameter derived from harmonic generation efficiency increased as degradation. Especially the second harmonic of the fundamental wave in the 1,820h aging material was observed to exceed 20dB more than that in the un-aged material. But velocity remained virtually the same for all specimens. We concluded that nonlinear parameter and attenuation are sensitive to material degradation, but velocity was not. It'll be a good parameter for evaluating the material degradation.

  • PDF

The Effect of Age Heat-treatment to the Electro-Chemical Corrosion Behavior on Ti-6Al-4V (Ti-6Al-4V재의 전기화학적부식 거동에 미치는 시효열처리의 영향)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.70-77
    • /
    • 2000
  • In this paper, the effect of solution and age heat treatment to the corrosion behavior for the Ti-6Al-4V alloy were studied by cyclic polarization methods. Ti-6Al-4V was solution heat treated at $1,066^{\circ}C$ and $966^{\circ}C$ for 5 hours, and followed by age heat treated at $650^{\circ}C$, $600^{\circ}C$ and $550^{\circ}C$ with 1, 2, 4, 8 and 16 hours under vacuum environment. Test solution was 3.5% NaCl with temperature $25^{\circ}C$. The obtained results were as follows: 1. Base metal was exhibited higher electrical charge than that of solution and aged material. With decrease of solution-treatment temperature from 1066 to $966^{\circ}C$, the electrical charge was increased due to softening of micro structure. 2. The corrosion resistance of specimen that solution treated at $966^{\circ}C$ for 5 hours and age heat treated at 650, 660 and $550^{\circ}C$ were increased with increase of aging time to 4, 8 and 16 hours respectively, and then decreased. 3. In case of 316L stainless steel, measured charge and corrosion potential was 0.0627 coulomb and -614 mV respectively. Corrosion resistance of Ti-6Al-4V was higher than that of 316L.

  • PDF

Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 열화 평가)

  • Koo, Jae-Mean;Seok, Chang-Sung;Kang, Min-Sung;Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Mun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature; delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature $1,151^{\circ}C$.

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Gwon, Jae-Do;Seong, Sang-Seok;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1287-1293
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range from 290$\^{C}$∼390$\^{C}$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 180hr at 430$\^{C}$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Effect of Cobalt Contents on the Biocompatibility and Corrosion Properties of Fe-31Cr-27Ni-1.6Mo-1.5W-0.26N Alloy (Fe-31Cr-27Ni-1.6Mo-1.5W-0.26N계 초내식성 스테인리스강의 생체적합성 및 부식특성에 미치는 Co함량의 영향)

  • Jang, Soon Geun;Yoo, Young Ran;Nam, Hee Soo;Shim, Gyu Tae;Kim, Jung Gu;Kim, Young Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • Super austenitic stainless steels shows the high PRE (Pitting Resistance Equivalent) number and the good corrosion resistance. This work controlled the Co contents in Fe-31Cr-1.7Mo-27Ni-0.25N alloys to elucidate the effect of cobalt contents on the biocompatibility and corrosion resistance. Increasing Co contents, the hardness of the annealed alloys tends to be reduced. In aged alloys, cobalt decreased the increments of hardness by aging treatment. Cobalt decreased the critical pitting temperature (CPT) in 6% $FeCl_3$ + 1% HCl solution, but improved the anodic polarization behavior in Hanks' balanced salt solution and artificial saliva solution. Repassivation rate in artificial body solutions was improved by increasing cobalt contents, but didn't show the linear relationship to PRE number of the alloys. The experimental alloys showed the non-cytotoxicity because of its high corrosion resistance.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.