• 제목/요약/키워드: Agarwal iteration

검색결과 5건 처리시간 0.017초

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS BY A MODIFIED FASTER ITERATION SCHEME

  • Khan, Safeer Hussain;Kim, Jong-Kyu
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.973-985
    • /
    • 2010
  • We introduce an iteration scheme for approximating common fixed points of two mappings. On one hand, it extends a scheme due to Agarwal et al. [2] to the case of two mappings while on the other hand, it is faster than both the Ishikawa type scheme and the one studied by Yao and Chen [18] for the purpose in some sense. Using this scheme, we prove some weak and strong convergence results for approximating common fixed points of two nonexpansive self mappings. We also outline the proofs of these results to the case of nonexpansive nonself mappings.

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS FOR NONLINEAR EQUATIONS

  • Sen, Syamal K.;Agarwal, Ravi P.;Khattri, Sanjay K.
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.395-411
    • /
    • 2012
  • Several methods with order higher than that of Newton methods which are of order 2 have been reported in literature for solving nonlinear equations. The focus of most of these methods was to economize on/minimize the number of function evaluations per iterations. We have demonstrated here that there are several computational pit-falls, such as the violation of fixed-point theorem, that one could encounter while using these methods. Further it was also shown that the overall computational complexity could be more in these high-order methods than that in the second-order Newton method.

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kim, Jong Kyu;Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권3호
    • /
    • pp.449-469
    • /
    • 2022
  • This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.