• Title/Summary/Keyword: Ag-solder

Search Result 396, Processing Time 0.022 seconds

Interfacial Reaction and Mechanical Property of BGA Solder Joints with LTCC Substrate (LTCC기판과 BGA 솔더접합부의 계면반응 및 기계적 특성)

  • Yoo, Choong-Sik;Ha, Sang-Su;Kim, Bae-Kyun;Jang, Jin-Kyu;Seo, Won-Chan;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The effects of aging time on the microstructure and shear strength of the Low Temperature Co-fired Ceramic (LTCC)/Ag pad/Electroless Nickel Immersion Gold (ENIG)/BGA solder joints were investigated through isothermal aging at $150^{\circ}C$ for 1000 h with conventional Sn-37Pb and Sn-3Ag-0.5Cu. $Ni_3Sn_4$ intermetallic compound (IMC) layers was formed at the interface between Sn-37Pb solder and LTCC substrate as-reflowed state, while $(Ni,Cu)_3Sn_4$ IMC layer was formed between Sn-3Ag-0.5Cu solder and LTCC substrate. Additional $(Cu,Ni)_6Sn_5$ layer was found at the interface between the $(Ni,Cu)_3Sn_4$ layer and Sn-3Ag-0.5Cu solder after aging at $150^{\circ}C$ for 500 h. Thickness of the IMC layers increased and coarsened with increasing aging time. Shear strength of both solder joints increased with increasing aging time. Failure mode of BGA solder joints with LTCC substrate after shear testing revealed that shear strength of the joints depended on the adhesion between Ag metallization and LTCC. Fracture mechanism of Sn-37Pb solder joint was a mixture of ductile and pad lift, while that of Sn-3Ag-0.5Cu solder joint was a mixture of ductile and brittle $(Ni,Cu)_3Sn_4$ IMC fracture morphology. Failure mechanisms of LTCC/Ag pad/ENIG/BGA solder joints were also interpreted by finite element analyses.

Reliability of Fine Pitch Solder Joint with Sn-3.5wt%Ag Lead-Free Solder (Sn-3.5wt%Ag 비납솔더를 이용한 미세피치 솔더접합부의 신뢰성에 관한 연구)

  • 하범용;이준환;신영의;정재필;한현주
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.89-96
    • /
    • 2000
  • As solder becomes small and fine, the reliability and solderability of solder joint are the critical issue in present electronic packaging industry. Besides the use of lead(Pb) containing solders for the interconnections of microelectronic subsystem assembly and packaging has enviromental problem. In this study, using Sn/Pb and Sn/Ag eutectic solder paste, in order to obtain decrease of solder joint strength with increasing aging time, initial solder joint strength and aging strength after 1000 hour aging at $100^{\circ}C$ were measured by peel test. And in order to obtain the growth of intermetallic compound(IMC) layer thickness, IMC layer thickness was measured by scanning electron microscope(SEM). As a result, solder joint strength was decreased with increasing aging time. The mean IMC layer thickness was increased linearly with the square root of aging time. The diffusion coefficient(D) of IMC layer was found to $1.29{\times}10^{-13}{\;}cm^2/s$ at using Sn/Pb solder paste, 7.56{\times}10^{-14}{\textrm}{cm}^2/s$ at using Sn/Ag solder paste.

  • PDF

Joining characteristics of BGA solder bump by induction heating (유도가열에 의한 BGA 솔더 범프의 접합특성에 관한 연구)

  • 방한서;박현후
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.86-88
    • /
    • 2003
  • The characteristic of induction heating solder bump(solder ball: Sn-37Pb, Sn-3.5Ag, Sn-3.0Ag-0.5Cu) has analyzed in this paper. The initial condition of induction heating depends on the time and current. The shape of lead-free solder bump is better than lead solder. The shear strength of lead solder bump has decreased with aging time. The average of shear strength of solder bump is about 10N, 11N, and 11N respectively. The lead-free solder bump's shear strength is better than lead solder and varies irregularly with aging time.

  • PDF

Study on the Prediction of Fatigue Life of BGA Typed Solder Joints (BGA 형태 솔더 접합부의 피로 수명 예측에 관한 연구)

  • Kim, Seong-Keol;Kim, Joo-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.137-143
    • /
    • 2008
  • Thermal fatigue life prediction for solder joints becomes the most critical issue in present microelectronic packaging industry. And lead-free solder is quickly becoming a reality in electronic manufacturing fields. This trend requires life prediction models for new solder alloy systems. This paper describes the life prediction models for SnAgCu and SnPb solder joints, based upon non-linear finite element analysis (FEA). In case of analyses of the SnAgCu solder joints, two kinds of shapes are used. As a result, it is found that the SnAgCu solder has longer fatigue life than the SnPb solder in temperature cycling analyses.

Effects of Ag on the Characteristics of Sn48In52Agx (wt%) Low-Melting Solders for Photovoltaic Ribbon (태양광 리본용 Sn48In52Agx (wt%) 저융점 솔더의 특성에 미치는 Ag의 영향)

  • Seung-Han Lee;Dong-Hyeon Shin;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.74-78
    • /
    • 2024
  • We have studied the effects of Ag on the characteristics of Sn48In52Agx (wt%) low-melting solders for photovoltaic ribbons. The Sn48In52 (wt%) solder coexisted in the InSn4 and In3Sn alloys. Ag atoms added in the solder formed an AgIn2 alloy by reacting with some part of In atoms, while they did not react with Sn atoms. The addition of Ag atoms in the Sn48In52Agx (wt%) solders showed useful results; an increase in peel strength and a decrease in melting temperature. The peel strength of the ribbon plated with the Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn48In52Ag1 (wt%) solder largely increased to 125.1 N/mm2. In the meanwhile, the melting temperature of the Sn48In52 (wt%) solder was 119.2℃, and that of the Sn48In52Ag1 (wt%) solder decreased to 114.0℃.

Effects of Zn Surface Finish on the Solder Joint Microstructure and the Impact Reliability (Sn-3.5Ag 솔더와 Zn 표면층의 반응을 통한 솔더 계면현상과 충격 신뢰성에 관한 연구)

  • Jee, Young-Kun;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.87-92
    • /
    • 2008
  • The interface microstructure of Sn-3.5Ag/Cu joint was modified by electroplating varying amount of Zn on Cu UBM. As the amount of Zn dissolved in Sn-3.5Ag solder increased with the electroplating Zn thickness, Cu-Sn IMCs such as $Cu_6Sn_5$ and $Cu_3Sn$ were replaced by Zn-containing IMCs such as $Cu_5Zn_8$ and $Ag_5Zn_8$, which increased the drop reliability of solder joints significantly. When the amount of Zn dissolved in solder was about 3.8wt%, drop resistance was best due to the effective suppression of Cu-Sn IMC and voids at the interface.

  • PDF

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in ʼn-BGA (ʼn-BGA에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.59-59
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp. : 250℃ and conveyer speed : 0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was 250℃. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn (5㎛), Cu/Ni (5㎛), and Cu/Ni/Au (5㎛/500Å) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in $\mu-BGA$ ($\mu-BGA$에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp.:$250^{\circ}C$and conveyer speed:0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was $250^{\circ}C$. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn ($5\mu\textrm{m}$), Cu/Ni ($5\mu\textrm{m}$), and Cu/Ni/Au ($5\mu\textrm{m}/500{\AA}$) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

Material Property Evaluation of High Temperature Creep on Pb-free Solder Alloy Joint to Reflow Time by Shear Punch-creep Test (전단펀치-크리프 시험에 의한 리플로우 시간별 Pb-free 솔더 합금 접합부에 대한 고온 크리프 물성 평가)

  • Ham, Young Pil;Heo, Woo Jin;Yu, Hyo Sun;Yang, Sung Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.145-153
    • /
    • 2013
  • In this study, shear punch-creep (SP-Creep) at Sn-4Ag/Cu pad the joint was tested by using environment-friendly Pb-free solder alloy Sn-4Ag of electronic components. Pb eutectic alloy (Sn-37Pb) joints limited to environmental issues with reflow time (10sec, 30sec, 100sec, 300sec) according to two types of solder alloy joints are compared and evaluated by creep strain rate, rupture time and IMC (Intermetallic Compound) behavior. As the results, reflow time increases with increasing thickness of IMC can be seen at overall 100sec later in case of two solder joints on the IMC thickness of Sn-4Ag solder joints thicker than Sn-37Pb solder joints. In addition, when considering creep evaluation factors, lead-free solder alloy Sn-4Ag has excellent creep resistance more than Pb eutectic alloy. For this reason, the two solder joints, such as in the IMC (Cu6Sn5) was formed. However, the creep resistance of Sn-4Ag solder joints was largely increased in the precipitation strengthening effect of dispersed Ag3Sn with interface more than Sn-37Pb solder joints.

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF