DOI QR코드

DOI QR Code

Effects of Ag on the Characteristics of Sn48In52Agx (wt%) Low-Melting Solders for Photovoltaic Ribbon

태양광 리본용 Sn48In52Agx (wt%) 저융점 솔더의 특성에 미치는 Ag의 영향

  • Seung-Han Lee (Department of Advanced Materials Engineering, Kyungpook National University) ;
  • Dong-Hyeon Shin (Department of Advanced Materials Engineering, Kyungpook National University) ;
  • Tae-Sik Cho (Department of Advanced Materials Engineering, Kyungpook National University) ;
  • Il-Sub Kim (Development Team, JH Materials)
  • 이승한 (경북대학교 신소재공학전공) ;
  • 신동현 (경북대학교 신소재공학전공) ;
  • 조태식 (경북대학교 신소재공학전공) ;
  • 김일섭 ((주)JH머티리얼즈 개발팀)
  • Received : 2023.09.18
  • Accepted : 2023.10.27
  • Published : 2024.01.01

Abstract

We have studied the effects of Ag on the characteristics of Sn48In52Agx (wt%) low-melting solders for photovoltaic ribbons. The Sn48In52 (wt%) solder coexisted in the InSn4 and In3Sn alloys. Ag atoms added in the solder formed an AgIn2 alloy by reacting with some part of In atoms, while they did not react with Sn atoms. The addition of Ag atoms in the Sn48In52Agx (wt%) solders showed useful results; an increase in peel strength and a decrease in melting temperature. The peel strength of the ribbon plated with the Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn48In52Ag1 (wt%) solder largely increased to 125.1 N/mm2. In the meanwhile, the melting temperature of the Sn48In52 (wt%) solder was 119.2℃, and that of the Sn48In52Ag1 (wt%) solder decreased to 114.0℃.

Keywords

Acknowledgement

본 연구는 '산업통상자원부'의 '신재생에너지 핵심기술개발사업'으로 (주)JH머티리얼즈와 공동으로 수행된 연구결과이다. 저자들은 SEM-EDS와 XRD 실험에 도움을 준 한국기초과학지원연구원(대구 센터) 황기주 선생과 이상걸 박사에게 감사드린다.

References

  1. J. M. Pearce, Futures, 34, 663 (2002). doi: https://doi.org/10.1016/S0016-3287(02)00008-3
  2. A. Rose, Phys. Status Solidi A, 56, 11 (1979). doi: https://doi.org/10.1002/pssa.2210560102
  3. T. S. Cho, M. S. Chae, and C. S. Cho, Trans. Electr. Electron. Mater., 15, 217 (2014). doi: https://doi.org/10.4313/TEEM.2014.15.4.217
  4. T. S. Cho and C. S. Cho, Trans. Electr. Electron. Mater., 16, 20 (2015). doi: https://doi.org/10.4313/TEEM.2015.16.1.20
  5. J. S. Jeong, N. Park, and C. Han, Microelectron. Reliab., 52, 2326 (2012). doi: https://doi.org/10.1016/j.microrel.2012.06.027
  6. J. Wendt, M. Trager, R. Klengel, M. Petzold, D. Schade, and R. Sykes, Proc. 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE, Las Vegas, USA, 2010) p. 1. doi: https://doi.org/10.1109/ITHERM.2010.5501299
  7. Y. S. Son and T. S. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 332 (2015). doi: https://doi.org/10.4313/JKEM.2015.28.5.332
  8. J. H. Jeong and T. S. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 119 (2017). doi: http://doi.org/10.4313/JKEM.2017.30.2.119
  9. F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, Soldering Surf. Mount Technol., 13, 7 (2001). doi: https://doi.org/10.1108/09540910110361668
  10. W. B. Hampshire, Soldering Surf. Mount Technol., 5, 49 (1993). doi: https://doi.org/10.1108/eb037826
  11. C. Y. Liu, C. Chan, and K. N. Tu, J. Appl. Phys., 88, 5703 (2000). doi: https://doi.org/10.1063/1.1319327
  12. J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Mater., 42, 789 (2000). doi: https://doi.org/10.1016/S1359-6462(99)00431-5
  13. I.K.A. Qader and Y. B. Zainuddin, Int. J. Bus. Manage., 3, 240 (2011). doi: https://doi.org/10.5539/ijbm.v6n3p240
  14. J. S. Jeong, C. M. Oh, G. Y. Goo, Y. H. Yoon, U. H. Hwang, and W. S Hong, J. Weld. Joining, 29, 11 (2011). doi: https://doi.org/10.5781/KWJS.2011.29.4.373
  15. Y. Liu and K. N. Tu, Mater. Today Adv., 8, 100115 (2020). doi: https://doi.org/10.1016/j.mtadv.2020.100115
  16. Y. Shu, K. Rajathurai, F. Gao, Q. Cui, and Z. Gu, J. Alloys Compd., 626, 391 (2015). doi: https://doi.org/10.1016/j.jallcom.2014.11.173
  17. H. Deng, K. Wang, Y. Duan, W. Zhang, and J. Hu, Coatings, 12, 429 (2022). doi: https://doi.org/10.3390/coatings12040429
  18. J. F. Li, S. H. Mannan, M. P. Clode, D. C. Whalley, and D. A. Hutt, Acta Mater., 54, 2907 (2006). doi: https://doi.org/10.1016/j.actamat.2006.02.030
  19. J. W. Yoon, C. B. Lee, and S. B. Jung, Mater. Trans., 43, 1821 (2002). doi: https://doi.org/10.2320/matertrans.43.1821
  20. J. Gong, C. Liu, P. P. Conway, and V. V. Silberschmidt, Mater. Sci. Eng., A, 427, 60 (2006). doi: https://doi.org/10.1016/j.msea.2006.04.034
  21. L. R. Garcia, W. R. Osόrio, and A. Garcia, Mater. Des., 32, 3008 (2011). doi: https://doi.org/10.1016/j.matdes.2010.12.046
  22. R. A. Islam, Y. C. Chan, W. Jillek, and S. Islam, Microelectron. J., 37, 705 (2006). doi: https://doi.org/10.1016/j.mejo.2005.12.010
  23. L. R. Garcia, W. R. Osόrio, L. C. Peixoto, and A. Garcia, Mater. Charact., 61, 212 (2010). doi: https://doi.org/10.1016/j.matchar.2009.11.012
  24. H. Yousuf, M. Q. Khokhar, S. Chowdhury, D. P. Pham, Y. Kim, M. Ju, Y. Cho, E. C. Cho, and J. Yi, Curr. Photovoltaic Res., 9, 75 (2021). doi: https://doi.org/10.21218/CPR.2021.9.3.075
  25. D. H. Shin, S. H. Lee, T. S. Cho, and I. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 186 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.2.12
  26. J. Glazer, J. Electron. Mater., 23, 693 (1994). doi: https://doi.org/10.1007/BF02651361
  27. R. Kubiak, M. Wolcyrz, and W. Zacharko, J. Less-Common Met., 65, 263 (1979). doi: https://doi.org/10.1016/0022-5088(79)90116-4
  28. W. M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Edition (CRC Press, Boca Raton, 2012). doi: https://doi.org/10.1201/b12286
  29. Z. Mei and J. W. Morris, J. Electron. Mater., 21, 401 (1992). doi: https://doi.org/10.1007/BF02660403
  30. D. F. Susan, J. A. Rejent, P. F. Hlava, and P. T. Vianco, J. Mater. Sci., 44, 545 (2009). doi: https://doi.org/10.1007/s10853-008-3083-2