• 제목/요약/키워드: Ag-solder

검색결과 396건 처리시간 0.021초

리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가 (Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time)

  • 하벼리;유효선;양성모;노윤식
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

자동차 전장품용 무연솔더 접합부의 시리즈 시험 유효성 (Validation of sequence test method of Pb-free solder joint for automotive electronics)

  • 김아영;오철민;홍원식
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.25-31
    • /
    • 2015
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from electronic devices and system. Specifically, reliability issue of lead-free solder joint have an increasing demand for the car electronics caused by ELV banning. The authors prepared engine control unit and cabin electronics soldered with Sn-3.0Ag-0.5Cu (SAC305). To compare with the degradation characteristics of solder joint strength, thermal cycling test (TC), power-thermal cycling test (PTC) and series tests were conducted. Series tests were conducted for TC and PTC combined stress test using the same sample in sequence and continuously. TC test was performed at $-40{\sim}125^{\circ}C$ and soak time 10 min for 1000 cycles. PTC test was applied by pulse power and full function conditions during 100 cycles. Combined stress test was tested in accordance with automotive company standard. Solder joint degradation was observed by optical microscopy and environment scanning electron microscopy (ESEM). In addition, to compare with deterioration of bond strength of quad flat package (QFP) and chip components, we have measured lead pull and shear strength. Based on the series test results, consequently, we have validated of series test method for lifetime and reliability of Pb-free solder joint in automotive electronics.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • 마이크로전자및패키징학회지
    • /
    • 제22권2호
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

미세조직이 Sn계 무연솔더의 크리프 특성에 미치는 영향 (Effects of Microstructure on the Creep Properties of the Lead-free Sn-based Solders)

  • 유진;이규오;주대권
    • 마이크로전자및패키징학회지
    • /
    • 제10권3호
    • /
    • pp.29-35
    • /
    • 2003
  • SnAg, SnAgCu, SnCu 무연솔더합금을 주조 상태에서 냉간압연한 후 열적으로 안정화한 시편 (TS)과, 실제 솔더 범프와 유사한 미세구조의 수냉에 급속 냉각(WQ)된 시편 두가지를 $100^{\circ}C$에서 크리프 실험을 행하였다. 급속냉각한 시편의 냉각속도는 140-150 K/sec로 primary $\beta-Sn$ 크기가 TS 시편보다 5∼10배 정도 작았으며, 기지내 primary $\beta-Sn$이 차지하는 분율은 증가하였다. 반면에 공정상 내의 $Ag_3Sn$상의 크기는 더 작아졌다. 크리프 실험 결과 WQ 시편의 최소크리프 변형율 속도($\{beta}_{min}$)가 TS 보다 약 $10^2$배 정도 작았으며. 더 큰 파괴시간을 보였다. TS-SnAg의 크리프파괴는 $Ag_3Sn$ 또는 $Cu_6Sn_5$에서의 공공의 핵생성, power-law 크리프에 의한 공공의 성장, 그리고 크리프 공공의 상호 연결로 일어났으며, WQ-SnAgCu는 시편이 두께가 얇아 네킹에 의해 파괴가 일어났다.

  • PDF

Bi가 첨가된 Sn-3.5Ag 솔더볼과 Cu/Ni-Co/Au 하부층과의 접합 강도 연구 (Shear Strength of Sn-3-5Ag-$\chi$Bi Solder Balls Reflowed on Cu/Ni-Co/Au Metallizations)

  • 신승우;유진
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.98-103
    • /
    • 2002
  • BGA(Ball Grid Array) 패키지의 솔더볼 패드 중의 하나인 Au/Ni-Co/Cu 금속층 위에 Bi가 첨가된 Sn-3.5Ag-$\chi$Bi 솔더볼을 리플로우시켰다. 리플로우한 후 130 $^{\circ}C$에서 열처리함에 따른 계면상 및 솔더 내부의 상변화를 관찰하였다. 계면에는 (Ni,Co)$_3$Sn$_4$외에 (Au,Ni,Co,Bi)Sn$_4$가 생성되었음을 관찰할 수 있었고, 솔더 내부에는 (Au,Ni,Co,Bi)SH$_4$, Ag$_3$Sn, Bi 상이 혼재되어 있었다. Nano-indentation에 의한 경도 측정 결과, Bi 함량 증가에 따라 경도는 증가하였으나, 볼전단(Ball Shear) 테스트 결과는 Bi가 증가됨에 따라 오히려 볼전단 강도값이 감소하였다. 이는 파면 검사 결과, 파괴 경로가 주로 계면의 금속간 화합물과 솔더 사이에서 진행함에 기인한 것이다. 솔더 내부의 파괴 경로를 가진 2.5Bi가 가장 우수한 볼전단 강도값을 나타내었는데, 이는 솔더내의 Bi의 고용강화에 기인한 것으로 보인다.

  • PDF

LED 리드프레임을 위한 Sn-3.5Ag 솔더의 반사율 (Reflectivity of Sn-3.5Ag Solder for LED lead frame)

  • 기세호;;최정범;김원중;정재필
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.192-192
    • /
    • 2011
  • 본 연구에서는 LED lead frame을 위한 Sn-3.5Ag 솔더의 젖음 특성과 반사율에 관하여 조사하였다. 금속기판과 액체금속간의 젖음성은 wetting balance tester를 이용하여 평가하였으며, 최대인출력, 최대인출시간 등을 측정하고 표면장력을 계산하였다. Sn-3.5Ag 솔더를 $250{\sim}290^{\circ}C$의 온도에서 젖음성을 측정하였는데 온도가 증가함에 따라 젖음성이 향상되는 것을 확인할 수 있었다. 또한 솔더가 도금된 Cu-coupon의 반사율을 측정하였는데 $270^{\circ}C$에서 가장 높은 반사율을 나타냈다.

  • PDF

낙하해석을 통한 보드 레벨 플립칩에서의 솔더볼 충격수명에 관한 연구 (Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations)

  • 장총민;김성걸
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.237-242
    • /
    • 2014
  • Recently much research are has been done into the compositions of lead-free solders. As a result, there has been a rapid increase in the number of new compositions. In the past, the properties of these new compositions were determined and verified through drop-impact tests. However, these drop tests were expensive and it took a long time to obtain a result. The main goal of this study was to establish an analytical method capable of predicting the impact life-time of a new solder composition for board-level flip chips though the application of drop simulations using LS-DYNA. Based on the reaction load obtain with LS-DYNA, the drop-impact fracture cycles were predicted. The study was performed using a Sn-3.0Ag-0.5Cu solder (305 composition). To verify the reliability of the proposed analytical method, the results of the drop-impact tests and life-time analysis were compared, and were found to be in good agreement. Thus, the new analytical method was shown to be very useful and effective.

저온 경화형 Ag 페이스트 및 이를 이용한 Ag 후막의 제조 및 특성 (Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes)

  • 박준식;황준호;김진구;김용한;박효덕;강성군
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.18-23
    • /
    • 2003
  • Properties of Ag thick films fabricated by using low temperature curable silver pastes were investigated. Ag pastes were consisted of polymer resins and silver powders. Ag pastes were used for conductive or fixing materials between board and various electrical and electronic devices. Low temperature curable Ag pastes have some advantages over high temperature curable types. In cases of chip mounting, soldering properties were required for screen printed Ag thick films. In this study, four types of Ag pastes were fabricated with different compositions. Screen printed Ag thick films on alumina substrates were fabricated at various curing temperatures and times. Thickness, resistivity, adhesive strength and solderability of fabricated Ag thick films were characterized. Finally, Ag thick films produced using Ag pastes, sample A and B, cured at $150^{\circ}C$ for longer than 6 h and $180^{\circ}C$ for longer than 2 h, and $150^{\circ}C$ for longer than 1 h and $180^{\circ}C$ for 1 h, respectively, showed low resistivities of $10^{-4}$ $∼10^{-5}$ Ωcm and good adhesive strength of 1∼5 Mpa. Soldering properties of those Ag thick films with curing temperatures at solder of 62Sn/36Pb/3Ag were also investigated.