• Title/Summary/Keyword: Ag-coated Cu particle

Search Result 9, Processing Time 0.016 seconds

Electromagnetic Interference Shielding Effectiveness Properties of Ag-Coated Dendritic Cu Fillers Depending on pH of Galvanic Displacement Reaction for Ag Seed Layer and Contents of Deposited Ag Layer (은 코팅 구리 덴드라이트 필러 제조 시 은 시드층 형성을 위한 갈바닉 치환반응 pH 제어 및 은함량에 따른 전자파 차폐 특성)

  • Im, Dongha;Park, Su-Bin;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • Ag-coated Cu dendrites were prepared as a filler for an electromagnetic interference shielding application. Ag layers on the Cu dendrites was coated by two approaches. One is a direct autocatalytic plating with a reducing agent. The other approach was achieved by two-step plating, a galvanic displacement reaction to form Ag seed layers on Cu following by an autocatalytic plating with a reducing agent. The procedure-dependent average particle size and tap density of Ag-coated Cu dendrites were characterized. The electrical resistance and electromagnetic interference shielding effect (EMI SE) were analyzed with the Ag-coated Cu dendrites prepared in the two approaches. Additionally, the content of the Ag coated on Cu dendrites was controlled from 2% to 20%. The electrical resistance and EMI SE were critically determined by Ag contents coated on Cu.

Preparation and Optical Properties of Ag-Coated Cu Powder by Dropping Method of Coating Agent (피복제 적하법에 의한 Ag 피복 Cu 미립자의 제조 및 광학적 특성)

  • Yu, Yeon-tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.555-560
    • /
    • 2003
  • Ag-coated Cu particles were prepared by dropping method of coating agent and were evaluated by scanning electron microscope and color difference meter. The shape of Cu particles having obvious crystal plan and edge was changed spherically according to the increase of Ag coating amount. When the Ag coating amount was 50 wt% to Cu particles, the whiteness of Ag-coated Cu particles was almost similar to that of pure Ag particles. Adding $NH_4$OH in reductant solution could increase effectively the whiteness of the Ag-coated particles. The Ag-coated particles having the highest whiteness was obtained when the content of hydrazine in reductant solution was 0.48 M.

Microstructure and Synthesis of Ag Spot-coated Cu Nanopowders by Hydrothermal-attachment Method using Ag Colloid (수열흡착법을 이용한 은 점코팅된 구리 나노분말의 합성과 미세조직)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.

Preparation of 40 wt.% Ag-coated Cu Particles with Thick Ag Shells and Suppression of Defects in the Particles (두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • To prepare the Cu-based filler material indicating enhanced oxidation resistance property and Ag content, Ag-coated Cu particles was fabricated by Ag plating of 40 wt % on the spherical Cu particles with an average size of $2{\mu}m$ and their oxidation behavior was also evaluated. In the case that ethylenediaminetetraacetic acid was used alone, the fabricated particles frequently showed broken structures such as delamination at Ag shell/core Cu interface and hollow structure that are induced by excessive galvanic displacement reaction. As a result, fraction of defect particles increased up to 19.88% after the Ag plating of 40 wt.%. However, the fraction in the 40 wt.% Ag-coated Cu particles decreased to 9.01% and relatively smooth surface and dense microstructure in the Ag shell were also observed with additional usage of hydroquinone as a complexing agent. Ag-coated Cu particles having the enhanced microstructure did not show any weight increase by oxidation for exposure to air at $160^{\circ}C$ for 2 h, indicating increased oxidation resistance property.

Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating (서브 마이크론급 구리 입자의 은도금 공정에 따른 내산화성 강화 연구)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • To fabricate a copper (Cu)-based fine conductive filler having antioxidation property, submicron silver (Ag)-coated Cu particles were fabricated and their antioxidation property was evaluated. After synthesizing the Cu particles of $0.705{\mu}m$ in average diameter by a wet-reduction process, Ag-coated Cu particles were fabricated by successive Ag plating using ethylene grycol solvent. Main process parameters in the Ag plating were the concentration of reductant (ascorbic acid), the injection rate of Ag precursor solution, and the stirring rate in mixed solution. Thus, Ag plating characteristics and the formation of separate fine pure Ag phase were observed with different combinations of process parameters. As a result, formation of the separate pure Ag phase and aggregation between Ag-coated Cu particles could be suppressed by optimization of the process parameters. The Ag-coated Cu particles which were fabricated using optimal conditions showed slight aggregation, but excellent antioxidation property. For example, the particles indicated the weight gain not exceeding 0.1% until $225^{\circ}C$ when they were heated in air at the rate of $10^{\circ}C/min$ and no weight gain until 75 min when they were heated in air at $150^{\circ}C$.

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

SiO2/ZnS:Cu/ZnS Triplex Layer Coatings for Phosphorescence Enhancement

  • Zhang, Wen-Tao;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • The objective of this study is to coat the $SiO_2$ layer uniformly on the ZnS:Cu phosphors by using Sol-Gel method. From results of SEM micrographs observation, XRD and XPS analysis, it could be confirmed that $SiO_2$ layer was relatively well coated on ZnS:Cu particles. $Ag_2S$ was used as a decoding chemical to analyze the dense and uniform coating performance of $SiO_2$ layer on phosphor particles. It could be concluded that phosphors synthesized from our two step replacement method showed strong blue peak comparing to other method and rather weak green peak also. Obtained particle size of phosphors were about 20m diameter. Luminescence properties of the phosphors were examined by photoluminescence spectra at the excitation wavelength of 270 nm.

Fabrication of Cu Flakes by Ball Milling of Sub-micrometer Spherical Cu Particles (서브 마이크론급 구형 동분말의 볼 밀링을 통한 플레이크 동분말의 제조)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • As a preceding process for preparing several micrometer sized Ag-coated Cu flakes, ball milling of submicrometer-sized Cu particles synthesized through a wet chemical method was performed in order to convert the particles into flakes. To suppress oxidation and aggregation of the particles during ball milling, ethylene glycol and ethyl acetate were used as a medium and a surface modifying agent, respectively. Results obtained with different rotation speeds of a jar indicated that the rotation speed changes a rotating mode, and strikingly alters the final shapes and shape uniformity of Cu particles after milling. The diameter of zirconia ball was also confirmed. Although there was aggregates in the initial submicrometer-sized Cu particles, therefore, well-dispersed Cu flakes with a size of several micrometers were successfully prepared by ball milling through optimization of rotation speed, amount of ethyl acetate, and diameter of zirconia ball.

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.